Ulman Lindenberger
Direktor: Forschungsbereich Entwicklungspsychologie
Co-Director: Max Planck UCL Centre for Computational Psychiatry and Ageing Research
Sekretariat:
Helena Maravilla
Sandra Schmidt
Tel.: +49 30 82406-572/573
seklindenberger@mpib-berlin.mpg.de
Mitgliedschaften und Ämter (Auswahl)
- Co-Direktor, Max Planck UCL Centre for Computational Psychiatry and Ageing Research
- Sprecher, International Max Planck Research School on the Life Course (LIFE)
- Sprecher, International Max Planck Research School for Computational Methods in Psychiatry and Ageing Research (COMP2PSYCH)
- Fellow, Max Planck School of Cognition
- Wissenschaftliche Geschäftsführung, Minerva Stiftung
- Mitglied, Stiftungsrat der Max-Planck-Stiftung
- Vorsitz, Auswahlgremium Fördernde Mitglieder der Max-Planck-Gesellschaft
- Fellow, Association for Psychological Science (APS)
- Auswärtiges Mitglied, Klasse für Sozialwissenschaften (Klasse Nr. IX), Royal Swedish Academy of Sciences
- Mitglied, Nationale Akademie der Wissenschaften Leopoldina
- Mitglied, Stiftungsrat der Jacobs Foundation
- Mitglied, Wilhelm-Wundt-Gesellschaft
Akademischer Steckbrief:
Dr. phil. in Psychologie, 1990, Freie Universität Berlin
Habilitation in Psychologie, 1998, Freie Universität Berlin
Professor der Psychologie, Universität des Saarlandes
Professor der Psychologie, Freie Universität Berlin
Professor der Psychologie, Humboldt-Universität zu Berlin
Projektteilhabe:
- Rhythmen von Gedächtnis und Kognition über die Lebensspanne (RHYME)
- Veränderungen von Gedächtnisrepräsentationen über die Lebensspanne (LIME)
- Plastizitätsmechanismen und -progression
- Die Berliner Altersstudien (BASE)
- Interactive Brains, Social Minds
- Gehirnbildgebung in der Entwicklungspsychologie
- Methoden in der Lebensspannenpsychologie
Forschungsinteressen:
- Neuronale und Verhaltensplastizität der Lebensspanne
- Zusammenhänge zwischen Verhalten und Gehirn über die Lebensspanne
- Multivariate Methoden der Entwicklungsforschung
- Formale Modelle der Verhaltensentwicklung
Ausgewählte Literatur:
Tucker-Drob, E. M., De la Fuente, J., Köhncke, Y., Brandmaier, A. M., Nyberg, L., & Lindenberger, U. (2022). A strong dependency between changes in fluid and crystallized abilities in human cognitive aging. Science Advances, 8, Article eabj2422. https://doi.org/10.1126/sciadv.abj2422
Ghisletta, P., Mason, F., von Oertzen, T., Hertzog, C., Nilsson, L.-G., & Lindenberger, U. (2020). On the use of growth models to study normal cognitive aging. International Journal of Behavioral Development, 44(1), 88–96. https://doi.org/10.1177/0165025419851576
Schmiedek, F., Lövdén, M., von Oertzen, T., & Lindenberger, U. (2020). Within-person structures of daily cognitive performance differ from between-person structures of cognitive abilities. PeerJ, 8, Article e9290. https://doi.org/10.7717/peerj.9290
Lindenberger, U., & Lövdén, M. (2019). Brain plasticity in human lifespan development: The exploration-selection-refinement model. Annual Review of Developmental Psychology, 1, 197–222. https://doi.org/10.1146/annurev-devpsych-121318-085229
Brandmaier, A. M., Wenger, E., Bodammer, N. C., Kühn, S., Raz, N., & Lindenberger, U. (2018). Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). eLife, 7, Article e35718. https://doi.org/10.7554/eLife.35718
Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., & Newcombe, N. S. (2018). Hippocampal maturation drives memory from generalization to specificity. Trends in Cognitive Sciences, 22(8), 676–686. https://doi.org/10.1016/j.tics.2018.05.004
Shing, Y. L., Brehmer, Y., Heekeren, H., Bäckman, L., & Lindenberger, U. (2016). Neural activation patterns of successful episodic encoding: Reorganization during childhood, maintenance in old age. Developmental Cognitive Neuroscience, 20, 59–69. https://doi.org/10.1016/j.dcn.2016.06.003
Garrett, D. D., Nagel, I. E., Preuschhof, C., Burzynska, A. Z., Marchner, J., Wiegert, S., https://doi.org/10.1073/pnas.1504090112
, , Villringer, A., Li, S.-C., , Bäckman, L., & Lindenberger, U. (2015). Amphetamine modulates brain signal variability and working memory in younger and older adults. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7593–7598.Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572–578. https://doi.org/10.1126/science.1254403
Lindenberger, U., & Mayr, U. (2014). Cognitive aging: Is there a dark side to environmental support? Trends in Cognitive Sciences, 18(1), 7–15. https://doi.org/10.1016/j.tics.2013.10.006
https://doi.org/10.1126/science.1235294
, Brandmaier, A. M., , , , , , Lindenberger, U., & (2013). Emergence of individuality in genetically identical mice. Science, 340(6133), 756–759.https://doi.org/10.1016/j.neurobiolaging.2011.02.013
, , , , , , , , & (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620.e9–620.e22.https://doi.org/10.1037/a0020525
, , , & (2011). Cross-sectional age variance extraction: What's change got to do with it? Psychology and Aging, 26(1), 34–47.https://doi.org/10.1037/a0020080
, , , , & (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676.https://doi.org/10.3389/fnagi.2010.00027
, , & (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, Article 27.https://doi.org/10.1037/a0014986
, & (2009). Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychology and Aging, 24(1), 1–16.https://doi.org/10.1111/j.1467-7687.2009.00834.x
, , , & (2009). Lifespan differences in cortical dynamics of auditory perception. Developmental Science, 12(6), 839–853.https://doi.org/10.1159/000116114
, , , , & (2008). Psychological principles of successful aging technologies: A mini-review. Gerontology, 54(1), 59–68.Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life span theory in developmental psychology. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Vol 1. Theoretical models of human development (6th ed., pp. 569-664). New York: Wiley.
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676-1689. https://doi.org/10.1093/cercor/bhi044
Lindenberger, U., Singer, T., & Baltes, P. B. (2002). Longitudinal selectivity in aging populations: Separating mortality-associated versus experimental components in the Berlin Aging Study (BASE). Journal of Gerontology: Psychological Sciences, 57B(6), P474-P482. https://doi.org/10.1093/geronb/57.6.P474
Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: Increase in dual-task costs from young adulthood to old age. Psychology and Aging, 15(3), 417-436. https://doi.org/10.1037/0882-7974.15.3.417
Lindenberger, U., & Pötter, U. (1998). The complex nature of unique and shared effects in hierarchical linear regression: Implications for developmental psychology. Psychological Methods, 3(2), 218-230. https://doi.org/10.1037/1082-989X.3.2.218
Lindenberger, U., & Baltes, P. B. (1997). Intellectual functioning in old and very old age: Cross-sectional results from the Berlin Aging Study. Psychology and Aging, 12(3), 410-432. https://doi.org/10.1037/0882-7974.12.3.410
Chapman, M., & Lindenberger, U. (1992). Transitivity judgments, memory for premises, and models of children's reasoning. Developmental Review, 12(2), 124-163. https://doi.org/10.1016/0273-2297(92)90006-N