Schuck, N. W., Frensch, P. A., Schjeide, B.-M. M., Schröder, J., Bertram, L., & Li, S.-C. (2013). Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia, 51, 2757–2769. https://doi.org/10.1016/j.neuropsychologia.2013.09.009
Schuck, N. W., Gaschler, R., & Frensch, P. A. (2012). Implicit learning of what comes when and where within a sequence: The time-course of acquiring serial position-item and item-item associations to represent serial order. Advances in Cognitive Psychology, 8(2), 83–97. https://doi.org/10.5709/acp-0106-0
Schuck, N. W., Gaschler, R., Keisler, A., & Frensch, P. A. (2012). Position-item associations play a role in the acquisition of order knowledge in an implicit serial reaction time task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(2), 440–456. https://doi.org/10.1037/a0025816
Schuck, N. W., Wilson, R., & Niv, Y. (2019). A state representation for reinforcement learning and decision-making in the orbitofrontal cortex. In R. Morris, A. Bornstein, & A. Shenhav (Eds.), Goal-directed decision making: Computations and neural circuits (pp. 259–278). Academic Press.
Burgess, C., Schuck, N. W., & Burgess, N. (2011). Temporal neuronal oscillations can produce spatial phase codes. In S. Dehaene & E. Brannon (Eds.), Space, time and number in the brain: Searching for evolutionary foundations of mathematical thought (pp. 59–69). Elsevier.
Hall-McMaster, S., Tomov, M. S., Gershman, S. J., & Schuck, N. W. (2024). Neural prioritisation of past solutions supports generalisation. In CCN 2024: the 7th annual conference on Cognitive Computational Neuroscience.
Löwe, A. T., Petzka, M., Tzegka, M., & Schuck, N. W. (2024). Sleep inspires insight: A preregistered study. In CCN 2024: the 7th annual conference on Cognitive Computational Neuroscience.
Satti, M. H., Wille, K., Nassar, M. R., Cichy, R. M., Schuck, N. W., Dayan, P., & Bruckner, R. (2024). Absence of systematic effects of trait anxiety on learning under uncertainty. In CCN 2024: the 7th annual conference on Cognitive Computational Neuroscience.
Wu, C. M., Schulz, E., Garvert, M. M., Meder, B., & Schuck, N. W. (2018). Connecting conceptual and spatial search via a model of generalization. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), COGSCI 2018: Changing / minds. 40th Annual Cognitive Science Society Meeting, Madison, Wisconsin, USA, July 25-28 (pp. 1183–1188). Cognitive Science Society.
Das Learning Variability Network Exchange (LEVANTE) ist eine globale Initiative, die darauf abzielt, unser Verständnis der Lernvariabilität von Kindern zu verbessern
Die älteste nationale wissenschaftliche Institution der Welt ehrt den deutschen Entwicklungspsychologen und kognitiven Neurowissenschaftler für seine herausragenden Leistungen
Forschungsstipendium für Nachwuchswissenschaftler*innen, deren Arbeit der Verbesserung des Lernens und der Entwicklung von Kindern und Jugendlichen weltweit gewidmet ist
Gefördertes Forschungsprojekt untersucht epigenetische Mechanismen, die sozioökonomische Ungleichheiten in der körperlichen und kognitiven Gesundheit im Lebensverlauf beeinflussen