Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., Sachser, N., Lindenberger, U., & Kempermann, G. (2013). Emergence of individuality in genetically identical mice. Science, 340(6133), 756–759. https://doi.org/10.1126/science.1235294
von Oertzen, T., & Brandmaier, A. M. (2013). Optimal study design with identical power: An application of power equivalence to latent growth curve models. Psychology and Aging, 28(2), 414–428. https://doi.org/10.1037/a0031844
Brandmaier, A. M. (2024). Machine learning for mobile sensing data. In M. R. Mehl, M. Eid, C. Wrzus, G. M. Harari, & U. W. Ebner-Priemer (Eds.), Mobile sensing in psychology: Methods and applications (pp. 409–431). Guilford Press.
Brandmaier, A. M. (2024). Big data dimensionality reduction methods. In M. R. Mehl, M. Eid, C. Wrzus, G. M. Harari, & U. W. Ebner-Priemer (Eds.), Mobile sensing in psychology: Methods and applications (pp. 456–476). Guilford Press.
Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine learning approaches to structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed., pp. 722–739). Guilford Press.
Brandmaier, A. M., Driver, C. C., & Voelkle, M. C. (2018). Recursive partitioning in continuous time analysis. In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 259–282). Springer.
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2014). Exploratory data mining with structural equation model trees. In J. J. McArdle & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behavioral sciences (pp. 96–127). Routledge.
Peikert, A. (2023). Towards transparency and Open Science: A principled perspective on computational reproducibility and preregistration [Doktorarbeit, Humboldt-Universität zu Berlin]. https://doi.org/10.18452/27056
Forschungsstipendium für Nachwuchswissenschaftler*innen, deren Arbeit der Verbesserung des Lernens und der Entwicklung von Kindern und Jugendlichen weltweit gewidmet ist
Gefördertes Forschungsprojekt untersucht epigenetische Mechanismen, die sozioökonomische Ungleichheiten in der körperlichen und kognitiven Gesundheit im Lebensverlauf beeinflussen