Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine learning approaches to structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed., pp. 722–739). Guilford Press.
Brandmaier, A. M., Driver, C. C., & Voelkle, M. C. (2018). Recursive partitioning in continuous time analysis. In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 259–282). Springer.
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2014). Exploratory data mining with structural equation model trees. In J. J. McArdle & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behavioral sciences (pp. 96–127). Routledge.
Peikert, A. (2023). Towards transparency and Open Science: A principled perspective on computational reproducibility and preregistration [PhD Thesis, Humboldt-Universität zu Berlin]. https://doi.org/10.18452/27056
Brandmaier, A. M. (2011). Permutation distribution clustering and structural equation model trees [PhD Thesis, Universität des Saarlandes Saarbrücken].
Brandmaier, A. M., Ram, N., Wagner, G. G., & Gerstorf, D. (2017). Terminal decline in well-being: The role of multi-indicator constellations of physical health and psychosocial correlates (SOEPpapers on Multidisciplinary Panel Data Research No. 912). DIW.
Ernst, M. S., Stukalov, A., Brandmaier, A. M., & Peikert, A. (2025). StructuralEquationModels.jl: A Julia package for extensible and efficient structural equation modeling. PsyArXiv, April 18, 2025. https://doi.org/10.31234/osf.io/zwe8g_v1
The world’s oldest national scientific association honors the German developmental psychologist and cognitive neuroscientist for his outstanding achievements
The world’s oldest national scientific association honors the German developmental psychologist and cognitive neuroscientist for his outstanding achievements