Plasticity in Adults

Brain Concept
© lisaalisa_ill - stock.adobe.com

The massive amount of connections between neurons cannot be simply inscribed in genetic code, as the former severely outnumbers the latter. Amongst others, the genome is assigned to the important task of encoding the variety of nerve cell forms and different neurotransmitters, but genes cannot specify the exact connections between individual neurons. Hence, every brain has to start as a relatively structureless, but extremely flexible network of nerve cells that has the inherent ability to “wire” itself exactly in the way in which it best adjusts to its individual environment with its unique requirements. What is more, the brain also has to remain flexible in a more mature state, that is, in adulthood, and retain its ability to change existing connections and structure as a reaction to altering environmental circumstances. It is this ability of the brain to react to changes in experience in adulthood that we are interested in in this part of the project.

There is accumulating evidence for the occurrence of such plastic changes in the adult human brain structure. So far, relatively little is known about the mechanisms underlying these observed alterations and their time course. In this project we are using different behavioral paradigms to extend the evidence on brain plasticity, with a focus on investigating the timing of plastic changes while they accompany behavioral skill acquisition.

Our current research focusses on the following topics:


Cover Trends in Cognitive Science
© Elsevier

Wenger, E., Brozzoli, C., Lindenberger, U., & Lövdén, M. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21, 930–939. https://doi.org/ 10.1016/j.tics.2017.09.008

See Press release


Elisabeth Wenger
Ulman Lindenberger

Simone Kühn (adjunct researcher)

Ludmila Müller (research coordinator)

Plasticity in Adulthood

Key References

Brehmer, Y., Kalpouzos, G., Wenger, E., & Lövdén, M. (2014). Plasticity of brain and cognition in older adults. Psychological Research, 78, 790–802. doi: 10.1007/s00426-014-0587-z

Di Benedetto, S., Müller, L., Wenger, E., Düzel, S., & Pawelec, G. (2017). Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neuroscience & Biobehavioral Reviews, 75, 114–128. doi: 10.1016/ j.neubiorev.2017.01.044

Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience & Biobehavioral Reviews, 37, 2296–2310. doi: 10.1016/ j.neubiorev.2013.02.014

Wenger, E., Kühn, S., Verrel, J., Mårtensson, J., Bodammer, N. C., Lindenberger, U., & Lövdén, M. (2017). Repeated structural imaging reveals non-linear progression of experience-dependent volume changes in human motor cortex. Cerebral Cortex, 27, 2911–2925. doi: 10.1093/cercor/ bhw141

Wenger, E., & Lövdén, M. (2016). The learning hippocampus: Education and experience-dependent plasticity. Mind, Brain, and Education, 10, 171–183. doi: 10.1111/mbe.12112

Wenger, E., & Shing, Y. L. (2016). Episodic memory. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications (pp. 69–80). New York: Springer.

Berlin Aging Study II

A subsample of participants in the Berlin Aging Study II is being examined with MRI to collect data on the structure of the brain and its age-associated changes.

Further information on this study can be found on the BASE-II website: www.base2.mpg.de

Logo BASE II | Berli Aging Study II