Brain Imaging Methods in Lifespan Psychology

Research on human development seeks to delineate the variable and invariant properties of age-graded changes in the organization of brain–behavior–environment systems. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have become indispensable tools for the noninvasive assessment of brain function, anatomy, microstructure, and metabolism. This project seeks to ascertain and improve the measurement quality of standard brain imaging protocols and to complement the standard repertoire by additional methods that carry promise for understanding the ways in which brains change as a function of maturation, learning, and senescence.

Central questions in lifespan psychology often are about the range and direction of change and variability, be it longitudinal change observed over years and decades, intervention-induced change over weeks and months, or fluctuations that occur from day to day and from moment to moment. Random measurement error and systematic drifts can compromise the reliable measurement of change. Hence, the project takes a special interest in exploring, safeguarding, and improving the precision and temporal stability of measurement.


MRT-Labor
The Max Planck Institute for Human Development has a magnetic resonance imaging scanner (Siemens TIM-Trio with a field strength of 3 Tesla). It is used to measure the structure and function of the brain. more

Selected Publications

Dahl, M. J., Mather, M., Düzel, S., Bodammer, N. C., Lindenberger, U., Kühn, S., & Werkle-Bergner, M. (2019). Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nature Human Behaviour, 3, 1203–1214. https://doi.org/10.1038/s41562-019-0715-2
Bender, A. R., Keresztes, A., Bodammer, N. C., Shing, Y. L., Werkle-Bergner, M., Daugherty, A. M., Yu, Q., Kühn, S., Lindenberger, U., & Raz, N. (2018). Optimization and validation of automated hippocampal subfield segmentation across the lifespan. Human Brain Mapping, 39(2), 916–931. https://doi.org/10.1002/hbm.23891
Brandmaier, A. M., Wenger, E., Bodammer, N. C., Kühn, S., Raz, N., & Lindenberger, U. (2018). Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). eLife, 7, Article e35718. https://doi.org/10.7554/eLife.35718
Stanley, J. A., & Raz, N. (2018). Functional magnetic resonance spectroscopy: The "new" MRS for cognitive neuroscience and psychiatry research. Frontiers in Psychiatry, 9, Article 76. https://doi.org/10.3389/fpsyt.2018.00076
Keresztes, A., Bender, A. R., Bodammer, N. C., Lindenberger, U., Shing, Y. L., & Werkle-Bergner, M. (2017). Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 9212–9217. https://doi.org/10.1073/pnas.1710654114

Project Master Theses

2018
Maximilian Michael Wichmann (Medizinphysik, Technische Universität Dortmund):
Reliability of Principal Fibre Tract Orientation Using Different High Angular Resolution Diffusion Imaging Methods

2015
Paul Enggruber & Felix Kreis (Physik, Technische Universität Berlin):
Development of Three-Dimensional Spectrally Selective Phosphorus Magnetic Resonance Imaging for Analysing Metabolism in the Human Brain

2014
Tian Yang (Medizintechnik, Technische Universität Berlin):
Measurement of Image Artifacts in Simultaneous Application of Transcranial Magnetic Stimulation (TMS) and Functional Magnetic Resonance Imaging (fMRI)

Go to Editor View