
Center for 
Lifespan Psychology

Director: Ulman Lindenberger



| Center for Lifespan Psychology 120

Nils C. Bodammer, Andreas M. Brandmaier, Julia A. M. Delius, Charles 
C. Driver, Sandra Düzel, Yana Fandakova, Douglas D. Garrett, Imke 
Kruse (Head of Research Planning and Research Coordination), 
Simone Kühn (as of 02/2017: University Medical Center Hamburg-
Eppendorf (UKE), Germany; since 01/2019: Lise Meitner Group for 
Environmental Neuroscience), Ulman Lindenberger, Viktor Müller, 
Naftali Raz, Myriam C. Sander, Katrin Schaar (as of 08/2019: Tech-
nische Universität Berlin, Germany, Julius Verrel (as of 04/2017: Uni-
versität zu Lübeck, Germany), Gert G. Wagner (Max Planck Fellow), 
Elisabeth Wenger, Markus Werkle-Bergner, André Werner

Postdoctoral Fellows
Janne Adolf (LIFE; as of 11/2017: KU Leuven, Belgium), Caroline 
Beese, Andrew R. Bender (as of 02/2018: Michigan State University, 
East Lansing, USA), Julia C. Binder (as of 03/2017: Merck [Schweiz] 
AG, Switzerland), Whitney G. Cole (as of 03/2018: New York 
University, USA), Martin J. Dahl, Marie K. Deserno, Julian D. Karch 
(as of 07/2017: Leiden University, Netherlands), Attila Keresztes (as 
of 12/2018: Hungarian Academy of Sciences, Budapest, Hungary), 
Maike M. Kleemeyer, Niels A. Kloosterman, Ylva Köhncke, Corinna 
Laube (as of 05/2020: Hochschule Fresenius, Hamburg, Germany), 
Ziyong Lin, Kristoffer N. T. Månsson, Beate E. Mühlroth (as of 
04/2020: Bundespsychotherapeutenkammer, Berlin, Germany), Chi 
(Zoe) Ngo, Alistair Perry (as of 04/2020 University of Cambridge, UK), 
Laurel Raffington (as of 01/2019: The University of Texas at Austin, 
USA), Davide Santoro, Caroline Szymanski (as of 08/2018: Hasso 
Plattner Institute, Potsdam, Germany), Leonhard Waschke, Claudia 
Wehrspaun (until 03/2020), Iris Wiegand

Predoctoral Fellows
Rasmus Bruckner (guest, as of 05/2019: Freie Universität Berlin, Ger-
many), Elisa S. Buchberger (LIFE), Oisin Butler (LIFE; as of 03/2019: 
Bayer AG, Berlin, Germany), Maike Hille (LIFE), Ann-Kathrin Jöchner 
(LIFE), Anna Karlsson (LIFE), Neda Khosravani (LIFE), Malte Kobelt 
(guest, as of 04/2020: Ruhr-Universität Bochum, Germany), Julian Q. 

Kosciessa (COMP2PSYCH), Lanfang Liu (guest, as of 01/2018: Beijing 
Normal University, China), Eleftheria Papadaki (LIFE), Claire Pauley 
(LIFE), Sarah Polk (LIFE), Liliana Polyanska (COMP2PSYCH), Alexander 
Skowron (LIFE/COMP2PSYCH), Verena R. Sommer (LIFE)

Associate Research Scientists
Annette Brose (Humboldt-Universität zu Berlin, Germany), Mara 
Mather (University of Southern California, Los Angeles, USA), Florian 
Schmiedek (German Institute for International Educational Research, 
Frankfurt a.M., Germany, affiliated until 12/2019), Sascha Schroeder 
(University of Göttingen, Germany), Yee Lee Shing (Goethe University 
Frankfurt am Main, Germany, affiliated until 12/2019), Julius Verrel 
(Universität zu Lübeck, affiliated until 12/2017), Manuel C. Völkle 
(Humboldt-Universität zu Berlin, Germany, affiliated until 12/2019), 
Timo von Oertzen (Universität der Bundeswehr München, Germany)

Visiting Researchers
Steven M. Boker (University of Virginia, Charlottesville, USA), Timothy 
R. Brick (The Pennsylvania State University, USA), Silvia Bunge (Uni-
versity of California, Berkeley, USA), Roberto Cabeza (Duke University, 
Durham, USA), Michael Frank (Stanford University, Stanford, USA), 
Adam Gazzaley (University of California, Oakland, USA), Christopher 
Hertzog (Georgia Institute of Technology, Atlanta, USA), Gerd 
Kempermann (Deutsches Zentrum für Neurodegenerative Erkrankun-
gen, Dresden, Germany), Jutta Kray (Saarland University, Saarbrücken, 
Germany), Suresh Krishna (Cognitive Neuroscience Laboratory, 
Göttingen, Germany), Antonio Krüger (German Research Center for 
Artificial Intelligence, Saarbrücken, Germany), Ulrich Mayr (University 
of Oregon, Eugene, USA), Axel Mecklinger (Saarland University, Saar
brücken, Germany), Thad A. Polk (University of Michigan, Ann Arbor, 
USA), Tomás Ryan (Trinity College Dublin, Ireland), Jeffrey A. Stanley 
(Wayne State University, Detroit, USA), Tadashi Suzuki (Shirayuri 
University, Tokyo, Japan), Elliott Tucker-Drob (The University of Texas 
at Austin, USA), Fredrik Ullén (Karolinska Institutet, Stockholm, Swe-
den), Hubert D. Zimmer (Saarland University, Saarbrücken, Germany)

Research Team 2017–2019/20



Center for Lifespan Psychology | 121

“But … its eminent modifiability, and its predisposition to self-initiated 
action, may it develop little or much, and may it differ in amount 

between different individuals, is among the immutable features of
humankind, which can be found wherever humans exist.”

Johann Nicolaus Tetens, 1777, I, p. 766

Introductory Overview

Founded in 1981 by Paul B. Baltes (1939–2006), the Center for Lifespan Psychology (LIP) pur-
sues lifespan psychology as a distinct conceptual approach within developmental psychology. 
Since 2004, the Center has continuously extended its research program into developmental 
and cognitive neuroscience. The Center hosts the Max Planck UCL Centre for Computational 
Psychiatry and Ageing Research led by Raymond Dolan and Ulman Lindenberger, which was 
founded in 2014 and is located in both London and Berlin (see pp. 177 ff.). LIP also is involved in 
the longitudinal Cognition, Brain, and Aging (COBRA) study, which investigates the role of do-
pamine in cognitive aging. COBRA is conducted in Umeå, Sweden, and involves scientists from 
Umeå University, from the Aging Research Center at Karolinska Institutet, Stockholm, and from 
LIP. The Center continues to pay special attention to the age periods of late adulthood and old 
age, which offer unique opportunities for innovation, both in theory and practice. At the same 
time, it has continually strengthened its focus on the operation of maturational mechanisms 
during childhood, especially in relation to memory development.

J. N. Tetens (1736–1807), 
philosopher of the 
Enlightenment Era

Three Guiding Propositions
The Center’s research agenda can be sum-
marized by three interrelated theoretical 
propositions (Lindenberger et al., 2006). In 
line with general tenets of lifespan psychol-
ogy, these propositions emphasize conceptual 
and methodological issues in the study of 
lifespan behavioral development and thereby 
provide a conceptual foundation for formu-
lating research questions in specific domains 
of interest.

Proposition 1: Lifespan Changes in the 
Individual’s Behavior as Interactions Among 
Maturation, Learning, and Senescence
The general goal of developmental psychology 
is to identify mechanisms that generate invari-
ance and variability, constancy and change, in 
behavioral repertoires from infancy to old age. 
By identifying the commonalities, differences, 
and interrelations in the ontogeny of sensa-
tion, motor control, cognition, affect, and 
motivation, both within and across individuals, 
developmental psychologists and developmen-
tally oriented neuroscientists attempt to arrive 
at more or less comprehensive theories of 
behavioral development. To provide explana-
tions that qualify as psychological and devel-

opmental, the effects of agents external to 
the developing individual, such as educational 
policies (Lövdén et al., in press), parents’ affect 
attunement, teachers’ classroom behavior, or a 
state’s retirement policies, need to be mapped 
onto mechanisms and organizational laws that 
operate and evolve within individuals. Hence, 
as John Nesselroade, Peter Molenaar, and 
others have emphasized, developing individu-
als are the privileged system for description, 
explanation, and intervention (Schmiedek 
et al., in press; Voelkle et al., 2018).
Individuals organize their exchange with the 
physical and social environment through 
behavior (see Figure 1). On the one hand, the 
changing brain and the changing physical and 
cultural environment shape behavioral devel-
opment. On the other hand, behavior alters 
both the brain and the environment. Hence, 
environment and brain act as antecedents but 
also as consequents of moment-to-moment 
variability and long-term changes in pat-
terns of behavior. The components of this 
system, brain, behavior, and environment, are 
constantly coupled and cannot be reduced 
onto each other, as they jointly condition an 
individual’s life trajectory through recursive 
self-regulation.
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In attempts to explain the age-graded 
evolution of this system, maturation and 
senescence denote the operation of age-
graded brain mechanisms and their effects 
on changes in behavior, which are especially 
pronounced early and late in life. In addi-
tion, learning, at any point during ontogeny, 
denotes changes in brain states induced by 
behavior–environment interactions. Matura-
tion cannot take place without learning, and 
learning cannot take place without matura-
tion. Similarly, the ways in which senescence 
takes its toll on the brains of aging individuals 

depends on their past and present learning 
and maturational histories. To complicate 
matters, processes commonly associated with 
maturation are not confined to early ontog-
eny, and processes related to senescence are 
not restricted to old and very old age. For 
instance, neurogenesis and synaptogenesis, 
which qualify as maturational mechanisms 
promoting plasticity, continue to exist in the 
adult and aging brain; conversely, declines 
in dopaminergic neuromodulation, which 
indicate senescence-related changes in brain 
chemistry, commence in early adulthood. 

Lifespan differences/change across years
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Figure 1.  Environment and brain as antecedents and consequents of moment-to-moment variability and long-
term changes in patterns of behavior. Lifespan changes in brain–behavior mappings are shaped by interactions 
among processes related to maturation, learning, and senescence. The identification of key players in the ontog-
eny of brain–behavior dynamics requires a coalition between formal tools for synthesis across levels of analysis 
and timescales as well as empirical methods to study variability and change in brain and behavior (adapted from 
Lindenberger et al., 2006).
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Thus, maturation, senescence, and learning 
mutually enrich and constrain each other 
throughout the entire lifespan and must be 
understood and studied as interacting forces 
constituting and driving the brain–behavior–
environment system. Psychologists occupy 
a central position in this endeavor because 
they possess a rich and adequate repertoire 
of experimental and methodological tools 
to describe and modify the organization of 
behavior (Voelkle et al., 2018). In particular, 
direct comparisons between children and 
older adults help to identify commonalities 
and differences in the mechanisms that drive 
child and adult development.

Proposition 2: Lifespan Theory and 
Methodology Need to Integrate Evidence 
Across Domains of Functioning, Timescales, 
and Levels of Analysis
Developmental psychology is faced with three 
challenging integrative tasks. First, there is 
the need to integrate theorizing and research 
practice across functional domains to attain a 
comprehensive picture of individual develop-
ment. For instance, sensorimotor and cogni-
tive functioning are more interdependent 
in early childhood and old age than during 
middle portions of the lifespan, and develop-
mental changes in either domain are better 
understood if studied in conjunction. Similar 
observations can be made for many other 
domains of functioning whose changes have 

generally been studied in isolation, such as 
the ontogeny of social interaction and cogni-
tion; of emotion regulation and motivational 
states; or of memory, working memory, and 
attention.
Second, there is a need to understand the 
mechanisms that link short-term variations 
to long-term change. Short-term variations 
are often reversible and transient, whereas 
long-term changes are often cumulative, 
progressive, and permanent. Establishing 
links between short-term variations and 
long-term changes is of eminent heuristic 
value, as it helps to identify mechanisms that 
drive development in different directions. 
For instance, aging cognitive systems show a 
decrease in processing robustness, which may 
signal impending long-term changes in other 
characteristics of the system (see Figure 2). To 
articulate these different timescales, we need 
to gather multivariate time-series data that 
capture short-term variability and long-term 
changes in cross-domain dependencies.
Third, to arrive at mechanistic explanations 
of behavioral change, there is the need to 
integrate behavioral and neural levels of 
analysis. At any given point in the lifespan, 
one-to-one mappings between brain states 
and behavioral states are the exception 
rather than the rule, as the brain generally 
explores and offers more than one implemen-
tation of an adaptive behavioral outcome 
(Lindenberger & Lövdén, 2019). Therefore, 
ontogenetic changes in behavioral repertoires 
are accompanied by continuous changes in 
multiple brain–behavior mappings. Some of 
these remapping gradients may be relatively 
universal and age-graded, whereas others 
may be more variable, reflecting genetic dif-
ferences, person-specific learning histories, 
the path-dependent nature of developmental 
dynamics, or a combination of all three. The 
resulting picture underscores the diversity 
and malleability of the organization of brain 
and behavior as well as the constraints on 
diversity and malleability brought about by (a) 
universal age-graded mechanisms associated 
with maturation and senescence, (b) general 
laws of neural and behavioral organization, 
and (c) sociocultural as well as physical regu-
larities of the environment.

Figure 2.  Example for predictions linking moment-
to-moment variability to long-term change and brain 
changes to behavioral changes. Aging individuals 
with greater moment-to-moment fluctuations in 
behavior at a given point in time are expected to show 
greater subsequent longitudinal decline in mean levels 
of functioning than individuals who fluctuate less 
(adapted from Lindenberger et al., 2006).

©  MPI for Human Development
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Proposition 3: The Exploration of Age-
Graded Differences in Plasticity Is a 
Powerful Tool for Identifying Mechanisms 
of Development
Both from scientific and societal perspectives, 
plasticity, or the alteration of developmental 
trajectories through experience, is a precious 
phenomenon (Lindenberger, 2014). Scientifi-
cally, inquiries into the plasticity of brain and 
behavior are rich sources of developmental 
information. Through the assessment of 
“changes in change,” they offer the promise to 
observe the operation and proximal conse-
quences of developmental mechanisms. For 
instance, studies in which research partici-
pants of different ages are instructed and 
trained to perform one or more cognitive 
tasks come with important validity benefits, 
such as (a) an increase in experimental con-
trol, (b) the identification of age differences 
near asymptotic performance levels, and (c) 
the assessment of transfer and maintenance 
effects. If neurochemical, neuroanatomical, 

and neurofunctional imaging measures are 
assessed before, during, and after training, 
intervention studies also offer new insights 
into relations between behavioral and neural 
manifestations of plasticity. By partly taking 
control over behavior–environment interac-
tions, mechanisms of learning can be studied 
in the context of maturation and senescence 
(Lindenberger, 2018).
From the larger perspective of societal evolu-
tion, cognitive intervention studies explore 
the range of possible development, or what 
could be possible in principle if conditions 
were different (see Figure 3). Hence, inves-
tigations of age changes in the plasticity of 
development carry the potential to explain 
and ameliorate the expression of human 
potential.

Conceptual Innovation
During the reporting period, the Center has 
sought to continue to contribute to concep-
tual innovation and integration in lifespan 
psychology and developmental neuroscience. 
In the following, we highlight three examples.
The exploration–selection–refinement model 
of human brain plasticity. In recent years, the 
project on plasticity in LIP (pp. 142 ff.), in col-
laboration with the laboratory led by Martin 
Lövdén in Sweden (see https://lovdenlab​
.org), has launched a new generation of 
experimental studies that combine behav-
ioral skill training with repeated functional 
and structural imaging to directly observe 
the temporal progression of plasticity in 
humans; for a pioneering study, see Wenger, 
Kühn et al. (2017). To guide this work, Ulman 
Lindenberger and Martin Lövdén have pro-
posed the exploration–selection–refinement 
model (ESR) of plastic change (Lindenberger 
& Lövdén, 2019). Lindenberger and Lövdén 
note that plasticity cannot be conceived as a 
process of perpetual growth, given the large 
number of skills humans acquire during their 
lifetime (see also Wenger, Brozzoli et al., 
2017). Instead, the ESR model posits that 
local plastic change proceeds in three phases 
that together form a learning cycle (see 
Figure 4). Early in learning, available neuronal 
microcircuits potentially capable of imple-
menting the computations needed to execute 

Figure 3.  An individual’s range of possible cognitive 
developmental trajectories from early to late adult-
hood. The blue curve shows the most likely develop-
mental path under normal circumstances. The fading 
of the background color indicates that more extreme 
paths are less likely. The functional threshold repre-
sents a level of functioning below which goal-directed 
action in the individual’s ecology will be severely 
compromised. The red curve represents the hope that 
changes in organism–environment interactions during 
adulthood move the individual onto a more posi-
tive trajectory. Beneficial changes may consist in the 
mitigation of risk factors, such as vascular conditions, 
metabolic syndrome, or chronic stress; the strengthen-
ing of enhancing factors, such as neuroplasticity; or 
both (adapted from Lindenberger, 2014).

©  MPI for Human Development
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a task are widely probed, and new circuits 
are formed, leading to an increase in gray-
matter volume. During this exploration phase, 
there is substantial trial-to-trial variability 
in patterns of neural activity in these regions 
as well as in behavior. Exploration is deemed 
critical for acquiring new skills and might 
serve as a physiological substrate of explora-
tion in the decision-theoretical sense, as skill 
acquisition generally requires the acquisition 
of complex rules, which only pays off in the 

long term. Exploration is followed by phases 
of experience-dependent selection and re-
finement of reinforced microcircuits and 
the gradual elimination of novel structures 
associated with unselected circuits, which 
may manifest as a decrease in gray-matter 
volume. The assumptions and hypotheses of 
the ESR will be computationally modeled and 
empirically tested in coming years.
Successful cognitive aging: The importance of 
maintenance. Together with Lars Nyberg from 

Figure 4.  The exploration, selection, and refinement (ESR) model of human brain plasticity. According to the 
model, local plastic change proceeds in three phases that together form a learning cycle. During the initial stages 
of the exploration phase, when the brain activates available microcircuits, there is substantial trial-to-trial vari-
ability in (a) behavior and in (b) patterns of neural activity. Facilitated by shifts in excitatory-inhibitory balance, 
this heightened level of activity induces structural change, such as the formation of new dendritic spines as well 
as other structural characteristics of the neuron, exemplified by myelination in panel c. Through a process of re-
inforcement learning that is partly mediated by the neurotransmitter dopamine, the best performing microcircuit 
is selected, and neural and behavioral variability starts to decrease (panels a and b). In a subsequent refinement 
stage, processing in the selected microcircuit stabilizes while novel structures of unselected microcircuits con-
tinue to retract (panel c). (d) At the macroscale of magnetic resonance imaging, the ESR model predicts curvilinear 
changes in functional activation, brain metabolites, and volume, in conjunction with a late-evolving monotonic 
increase in similarity of neural activation patterns (reproduced with permission from Lindenberger & Lövdén, 
2019).

©  Annual Reviews, Inc.
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Umeå University and others, researchers in LIP 
have emphasized brain maintenance as a key 
mechanism of successful cognitive aging. The 
notion of brain maintenance rests on the ob-
servation that individuals who show a relative 
lack of senescent brain changes also show 
more youth-like brain activation patterns and 
higher levels of cognitive performance. Brain 
maintenance is assumed to operate both at 
the general level of brain metabolism (Raz & 
Daugherty, 2018) and at the level of specific 
circuits and functions, such as the hippo-
campal formation, where it helps to preserve 
episodic memory (Nyberg & Lindenberger, 
2020). Physical exercise is likely to foster 
brain maintenance by reducing vascular 
risks (Köhncke et al., 2018). Maintenance 
might operate in concert with other meta-
mechanisms of successful cognitive aging, 
such as compensation and reserve. Attempts 
to discriminate among these mechanisms and 
compare their heuristic and explanatory value 
are underway (Cabeza et al., 2018).
Revisiting the dedifferentiation hypothesis 
of cognitive aging. About two decades ago, 
Shu-Chen Li and colleagues introduced 
a connectionist model of cognitive aging 
based on the observation that dopaminer-
gic neuromodulation decreases throughout 
adulthood and old age (Li et al., 2001). Based 
on this model, it is hypothesized that declines 
in neuromodulation lead to dedifferenti-
ated neural representations and processing 
pathways, thereby strengthening the variance 
that is shared across tasks. Using electro-
encephalography and functional magnetic 
resonance imaging, ongoing work by Minerva 
group leader Myriam Sander and colleagues 
within the LIME project investigates the core 
proposition of this line of reasoning, which 
states that individual neural representations 
become less distinct from one another with 
advancing adult age. A recent meta-analysis 
of correlated cognitive change in adulthood 
and old age, carried out by Elliot Tucker-Drob, 
Andreas Brandmaier, and Ulman Lindenberger 
(2019), is also relevant in this context. The 
authors found that an average of 60% of the 
between-person variation in change is shared 
across cognitive abilities (for details, see 
pp. 153 f.). In line with the dedifferentiation 

hypothesis, the proportion of shared variance 
in cognitive change increased from approxi-
mately 45% at age 35 years to approximately 
70% at age 85 years.

Research Awards (Selection)
In 2017, Markus Werkle-Bergner received a 
Research Fellowship from the Jacobs Founda-
tion to study the association between sleep 
and memory consolidation in children. In 
2018, Mara Mather from the University of 
Southern California was awarded the Max 
Planck Sabbatical Award, which provides 
renowned scientists with dedicated grant 
support to foster collaboration with the 
hosting Max Planck Institute. This award has 
allowed Mara Mather and researchers of the 
RHYME project to deepen their collaboration 
on the locus coeruleus and noradrenergic 
neuromodulation as a prime driver of adult 
age differences in episodic memory (Dahl 
et al., 2019). In 2019, Elliot Tucker-Drob from 
the University of Texas at Austin received the 
Max-Planck-Humboldt Medal for his contri-
butions to lifespan psychology. The medal is 
given to researchers with outstanding future 
potential who intend to collaborate with col-
leagues at a research institution in Germany. 
In the years to come, Elliot Tucker-Drob, who 
is an alumnus of the International Max Planck 
Research School on the Life Course (IMPRS 
LIFE) at the University of Virginia, will col-
laborate with Andreas Brandmaier and Ulman 
Lindenberger to develop multivariate methods 
that afford causal inferences about mecha-
nisms that underlie individual differences in 
behavioral development across the lifespan.

Overview of Research Projects at the 
Center for Lifespan Psychology
Currently, in March/April 2020, empiri-
cal and conceptual work at the Center is 
structured into eight research projects 
(see Table 1). Compared to the 2014–2016 
reporting period, the former project, Cogni-
tive and Neural Dynamics of Memory Across 
the Lifespan (ConMem), was split into two 
projects, RHYME and LIME, to accommodate 
its growing size and within-project special-
ization. At the same time, the former project 
Intra-Person Dynamics Across the Lifespan 
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was merged with the project Formal Methods 
in Lifespan Psychology, reflecting the high 
degree of overlap between the two.
The activities pursued in these eight projects 
cover a wide array of research areas in human 
behavioral development. For example, the fol-
lowing questions have been addressed during 
the reporting period: (a) How can we design 
and implement data analysis workflows that 
ascertain the reproducibility of the results 
we report in our empirical publications (cf. 
pp. 295 f.)? (b) Is there a link between the 
precision of slow oscillation-spindle cou-
pling during slow-wave sleep and memory 

consolidation in younger and older adults 
(Muehlroth, Sander et al., 2019)? (c) Do 
structural aspects of hippocampal subfields 
and limbic white matter predict individual 
differences in the learning rate among older 
adults (Bender et al., 2020)? (d) If the true 
shape of longitudinal change is exponential, 
but our analysis tools assume linearity, are 
researchers likely to notice the discrepancy in 
the context of standard longitudinal research 
designs (Ghisletta et al., 2020)? We provide 
our current answers to these questions and 
many more on the following pages.

Table 1.  The Center for Lifespan Psychology at the Max Planck Institute for Human Development: Overview of Research Projects

Name of Project Researchers, Including Postdoctoral Fellows Predoctoral Research Fellows

Lifespan Neural Dynamics Group 
(LNDG; cf. pp. 195 ff.)

Douglas D. Garrett**; Niels A. Kloosterman*,  
Kristoffer N. T. Månsson*, Leonhard Waschke*,  
Iris Wiegand*

Julian Q. Kosciessa, Liliana Polyanska, 
Alexander Skowron

Lifespan Rhythms of Memory and 
Cognition (RHYME)

Markus Werkle-Bergner**; Martin J. Dahl*,  
Ulman Lindenberger, Chi (Zoe) Ngo*

Elisa S. Buchberger, Ann-Kathrin  
Jöchner, Beate E. Mühlroth

Lifespan Age Differences in 
Memory Representations (LIME)

Myriam C. Sander1**; Ulman Lindenberger Anna Karlsson, Malte Kobelt°,  
Claire Pauley, Verena R. Sommer

The Berlin Aging Studies  
(BASE & BASE-II)

Julia A. M. Delius**, Sandra Düzel**; Andreas Brandmaier,  
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Aging Cognition, Neuromodulation, and 
Rhythmic Neural Activity
In their daily lives, individuals constantly 
experience a wide range of feelings, thoughts, 
and sensations. To permit goal-directed 
behavior and sustain cognitive development, 
some of these signals need to be enhanced 
whereas others need to be suppressed. At 
the neural level, this selection operation 
is implemented by a network of frontopa-
rietal cortical regions, interconnected via 
the thalamus. Processing in this network is 
orchestrated through temporally synchro-
nized activation patterns. Neuromodulators 
are of key importance in this process, as they 
regulate the efficacy of synaptic transmission. 
We hypothesize that senescent changes in 
the precision with which neuromodulators are 
released from brainstem nuclei might affect 
the functionality of selective processing, ren-
dering selection more difficult with advancing 
adult age.
In a series of studies (Dissertation Martin J. 
Dahl) conducted in collaboration with Mara 
Mather from the University of Southern 
California, USA, we have probed the interac-
tion between age-associated differences in 
the integrity and functionality of the central 
noradrenergic system and rhythmic neural ac-
tivity in the alpha frequency range (~10 Hz). 
Structurally, we focused on the locus coerule-
us (LC), a small brainstem nucleus that serves 
as the main source of norepinephrine (NE) in 
the brain. In the past, the LC’s small size and 
location deep in the brain have prevented 
noninvasive studies of its integrity and func-
tionality. Hence, in a first study (Dahl, Mather 
et al., 2019), we developed a semiautomatic 
method to derive individualized estimates of 
structural LC integrity from high-resolution 
neuromelanin-sensitive magnetic resonance 
images (MRI; see Figure 5). Applying these 

methods in samples of younger and older 
adults from the Berlin Aging Study II (see also 
pp. 138 ff.), we found that LC integrity cor-
related positively with individual differences 
in learning and memory across age groups 
and within the group of older adults. Analyses 
across the rostro-caudal extent of the LC 
revealed spatially confined and functionally 
relevant age differences in LC integrity. Criti-
cally, older adults who showed more youth-
like intensity ratios in rostral, hippocampus 
(HC)-projecting LC segments also showed 
higher levels of memory performance. An LC 
probability map derived from this study is 
freely available to the neuroscience commu-
nity to facilitate comparability of studies.
Memory is tightly modulated by attention, 
but the contribution of adult age differences 
in attention to memory is not well under-
stood. To reveal the interplay between the 
functionality of the NE system and rhyth-
mic neural activity in the alpha frequency 
range that modulates attention, we used 
neuromelanin-sensitive MRI, pupillometry, 
and electroencephalography (EEG) to relate 
the structural and functional integrity of the 
central NE system to rhythmic neural activ-
ity in the context of a demanding auditory 
selective attention task. Recently, we used the 
same task to reveal a partial reorganization of 
attention-related rhythmic neural responses 
(Dahl, Ilg et al., 2019). We combined the audi-
tory attention task with a fear-conditioning 
manipulation to manipulate NE release on a 
trial-by-trial level. During conditioning trials, 
we noted a reliable arousal response reflected 
in larger pupil responses and stronger desyn-
chronization of rhythmic neural alpha activity 
for trials with the reinforced conditioned 
stimulus (CS+) compared to non-reinforced 
(CS–) trials. Critically, presentation of fear-
conditioned stimuli during the auditory 

Research Project 1: Lifespan Rhythms of Memory and Cognition (RHYME)

This project investigates lifespan changes in attention, working memory, and episodic memory 
at structural, functional, and behavioral levels of analysis, with an emphasis on age differences 
in the coordination of oscillatory brain activity. It combines experimental with longitudinal 
research designs and uses multimodal data from a wide range of neuroimaging methods. Dur-
ing the reporting period, the project’s research activities were centered around four interrelated 
themes.
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Figure 5.  Schematic overview of the semiautomatic analysis procedure developed to extract individual locus coeruleus (LC) intensity values 
across the rostrocaudal extent. (a) Native-space neuromelanin-sensitive brainstem scans of three randomly selected participants (axial slices 
are shown). Hyperintensities corresponding to the LC are indicated by red arrows. (b) Neuromelanin-sensitive scans were aligned and pooled 
across participants to increase the signal-to-noise ratio and to facilitate LC delineation using a template-based approach. On a group level, 
LC location (red) was semiautomatically determined based on an intensity threshold relative to a pontine reference area (blue; see inlays). 
(c) Areas surviving the thresholding were grouped into a volume of interest (search space: upper plot; 3D representation) and used to restrict 
automatized extraction of individual peak intensities and their location. Observed peak LC locations were converted to a LC probability map 
(lower plot). (d) In standard space, the LC probability map was successfully validated using previously published maps. Circle radius indicates 
map size (i.e., number of voxels). (e) Estimated learning and memory performance trajectories for younger and older adults. To enable visualiza-
tion of the association between LC integrity and memory performance, single participants (thin lines; ID) are color-coded based on LC integrity 
(median-split), and mean trajectories for subgroups are displayed (thick lines). Left: n = 33 younger adults in the low- and high-LC groups 
respectively; right: n = 114 older adults each in the low- and high-LC groups, respectively (adapted from Dahl, Mather et al., 2019). 
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attention task reinstated the acquired arousal 
response in the absence of reinforcements. 
When combining the behavioral and physi-
ological data in a structural equation model, 
we found that a more responsive noradren-
ergic system was associated with more pro-
ficient attention performance and that older 
adults showed a reduced responsiveness of 
the NE system relative to young adults (Dahl 
et al., 2020).
Taken together, these findings indicate that 
reduced structural integrity and functional 
responsiveness of the central noradrenergic 
system is associated with age differences 
in attention and memory. Specifically, our 
multimodal data suggest that age-related 
changes in noradrenergic neuromodulation 
might affect attention and memory through 
alterations in low-frequency rhythmic neural 
activity.

The Co-Development of Brain, Sleep, and 
Cognition
Sleep, like breathing, arguably belongs to 
the most basic bodily needs. Healthy sleep 
supports learning and memory, whereas lack 
of sleep hinders knowledge acquisition. After 
a day full of learning, sleep supports the 
stabilization and integration of experiences 
into a framework of personal memories while 
setting the stage for continued learning dur-
ing ensuing wakefulness.
Thus far, most research into the causes of 
memory decline during adulthood and old age 
has focused on the encoding of new and the 
retrieval of previously acquired experiences. 
However, the long-term maintenance of new 
experiences also requires consolidation, de-
fined as the stabilization of memory represen-
tations beyond initial encoding. According to 
the Active System Consolidation framework 
introduced by Jan Born and colleagues, sleep 
plays a central role in consolidation by facili-
tating interactions between fast-learning HC 
and slow-learning cortical systems.
Normal human aging entails fundamental 
changes in sleep and brain structure, even in 
the absence of pathology. To date, only few 
studies have attempted to unravel age dif-
ferences in sleep physiology, brain structure, 
and memory consolidation. In part, this lack 

of relevant research reflects methodological 
problems when attempting to compare this 
triad across age groups.
In collaboration with Björn Rasch (University 
of Fribourg, Switzerland), we conducted a 
large age-comparative study on the influence 
of memory quality on encoding, consolidation, 
and retrieval (Dissertation Beate E. Mühlroth). 
The study consisted of a multisession protocol 
including behavioral, EEG, and MRI assess-
ments, as well as ambulatory polysomno-
graphic sleep monitoring. Healthy younger 
and older adults worked on an age-adapted 
associative memory task for two consecu-
tive days. The task was developed to assess 
memory strength at the single-item level 
within each study participant. We aimed at 
disentangling the effects of reduced over-
night forgetting from active enhancement of 
initially labile memory traces.
A first set of analyses targeted two main 
questions: first, whether age differences in 
sleep-dependent consolidation depend on the 
quality of memory representations formed 
during learning; and second, whether individ-
ual differences in sleep physiology and brain 
structure predict differences in consolidation 
within and across age groups (see Muehlroth, 
Sander et al., 2020). As expected, age differ-
ences in sleep-dependent memory stabiliza-
tion were most pronounced at medium levels 
of encoding quality. Partial least squares (PLS) 
analyses identified differences in sleep physi-
ology and brain structure that were associ-
ated with older age. However, when selecting 
younger and older adults based on their simi-
larity in sleep physiology and brain structure, 
as reflected in the PLS scores, neither of the 
two in isolation was sufficient to account for 
age differences in consolidation (see Figure 6). 
We next sought to better understand what 
might drive the observed age differences in 
sleep-dependent consolidation. Active System 
Consolidation theory suggests that the trans-
fer of labile HC-dependent representations 
into more stable cortical networks critically 
depends on the precise temporal coordina-
tion of cortical slow oscillations (SO) with 
fast-frequency thalamo-cortical spindles (Sp). 
Accordingly, animal research indicates that 
precise SO–Sp coupling is critical for consoli-
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Figure 6.  Sleep–memory associations in younger and older adults (adapted from Muehlroth et al., 2019, 2020). (a) Partial-least-squares 
solution relating physiological sleep indicators to age. The resulting latent variable captures the common variance between participants’ age 
and sleep. Latent variable weights (in Z-scores) demonstrate that all physiological sleep indicators have a stable negative relation to age. (b) 
Each participant’s expression of the latent variable is plotted against age. Overlap between the age groups is marked by dashed boxes. (c) 
Each participant’s latent sleep-profile score is plotted as a function of memory performance. Spearman’s rank-order correlation coefficients 
for the whole sample are displayed. Maintenance of medium-quality memories relates to the latent sleep-profile score across age groups. 
(d) Median behavioral performance for all subgroups is displayed, with grouping, line color, and style corresponding to (b). The first and third 
quartiles are depicted as error bars. Memory gain (shaded in light gray) is similar in all subgroups. Memory maintenance (shaded in darker gray) 
is modulated by sleep profile, but differs between younger and older adults even when they have the same sleep profile. (e) Age differences in 
slow-oscillation-spindle coupling (Muehlroth et al., 2019). Differences in wavelet power for slow-oscillations (SO) trials (respective down peak 
± 1.2 s) compared to trials without SOs are depicted (in t-score units). The average frontal SO for each age group is inserted in black (the scale 
in µV is indicated on the right of each time–frequency graph). In both age groups, EEG power is modulated as a function of the SO phase. In 
younger adults (on the left), fast spindle activity (12–15 Hz) peaks during the up peak of the SO. Slow spindle power (9–12 Hz) is strongest at 
the up- to down-state transition. In older adults (on the right), power increases are delayed and shifted to lower frequencies as compared to 
younger adults.  
YA: younger adults; OA: older adults.

©  MPI for Human Development
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dation. Most studies in humans thus far have 
looked at the contributions of each of the two 
components, but not at the precision of their 
coupling.
We used individually adjustable detection 
algorithms to identify individual SO and Sp 
events (see Muehlroth et al., 2019). On that 
basis, we were able to show that less precise 
coupling between slow waves and spindles 
is indeed associated with lower overnight 
memory maintenance among older adults. In 
addition, older adults with greater struc-
tural integrity of brain regions relevant for 
sleep and memory were more likely to show 
precise coupling patterns resembling those of 
younger adults than older adults with lower 
brain integrity.
In sum, this line of research suggests that age 
differences in sleep-associated consolidation 
depend on the precise coupling among car-
dinal neural sleep rhythms supported by the 
integrity of relevant brain structures.
Research on sleep and aging has sought to 
develop new approaches to identify and pos-
sibly treat age-associated pathological condi-
tions. In particular, attempts to establish sleep 
as a novel biomarker and treatment target for 
Alzheimer’s disease have led to a growing in-
terest in research on sleep and aging. This rise 
in interest has not been matched by a careful 
scrutiny of data-analytic procedures.
In a theoretical and empirical analysis 
(Muehlroth & Werkle-Bergner, 2020), we used 
electrophysiological sleep and structural brain 
data of healthy younger and older adults to 
identify, illustrate, and resolve methodologi-
cal core challenges in the study of sleep and 
aging. We demonstrated potential biases in 
common analytic approaches when applied to 
heterogeneous populations, especially regard-
ing markers of rhythmic neural activity during 
sleep. Using empirical demonstrations, we 
show that uncovering age-dependent altera-
tions in the physiology of sleep requires the 
development and use of age-group adjusted 
and individualized data-analytic procedures. 
Ultimately, these innovations may yield valid 
and reliable biomarkers that discriminate 

between normal and pathological age-related 
changes in sleep physiology.
A key challenge for the age-adapted analysis 
of rhythmic neural activity—like sleep oscil-
lations—is the identification of individual 
rhythmic events and their separation from 
arrhythmic background activity. In collabo-
ration with the Lifespan Neural Dynamics 
Group (see also pp. 195 ff.), we extended 
and improved an existing rhythm detection 
method (Kosciessa et al., 2020; see also p. 199 
for further details).

Development of Memory Specificity and 
Intra-Hippocampal Maturation
At the other end of the lifespan, the project 
has begun to link HC maturation to memory 
development. Just as any other adaptive 
learning system, children are confronted 
with two conflicting goals. They need to 
detect regularities in the world through 
generalization while remembering specific 
events through disambiguation. Core aspects 
of these functions are implemented in the 
internal neural circuits of the HC. Animal 
studies suggest that HC subfields reorganize 
during maturation. Studying this reorganiza-
tion in the human HC is technically chal-
lenging. As a result, the ontogenetic timing 
of HC maturation is controversial, and its 
contribution to generalization and specificity 
in cognitive development remains elusive. In a 
study using high-resolution in-vivo MRI data 
from children (6–14 years old) and younger 
adults (Keresztes et al., 2017), we were able to 
identify a multivariate profile of age-related 
differences in intra-HC structures and to 
show that HC maturity as captured by this 
pattern is associated with age differences in 
the differential encoding of unique memory 
representations. The uneven time course 
of HC subfield maturation identified in this 
study provides a mechanistic explanation for 
the observation that generalization precedes 
specification in memory development during 
childhood (for a theoretical overview, see 
Keresztes et al., 2018).
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Research Area 1: Age Differences in 
Similarity and Distinctiveness of Memory 
Representations
Are memories represented differently in older 
than in younger adults? According to the 
dedifferentiation hypothesis, age-related 
cognitive decline during adulthood and old 
age reflects decrements in the distinctive-
ness of neural representations and processing 
pathways (Li et al., 2001). In line with this 
hypothesis, pioneering work by Denise Park 
and colleagues has shown that differences 
in the neural representation between items 
belonging to different categories, such as 
houses and faces, are less pronounced in older 
adults than in younger adults. However, most 
studies thus far have not yet linked differ-
ences in the distinctiveness of individual 
memory representations to adult age differ-
ences in cognitive performance. In the LIME 
project, we systematically probe whether links 
between neural distinctiveness and perfor-
mance help to elucidate adult age differences 
in episodic memory.
In pursuing this research question, the project 
makes ample use of subsequent memory 
paradigms, which analyze recall success as 
a function of neural activity during encod-
ing, such as variations in oscillatory power 
measured with electroencephalography (EEG). 
In particular, power increases in the theta 
band accompanied by power decreases in 
the alpha/beta bands have been shown to 
indicate associative binding and elaboration 
mechanisms in young adults. We were able 
to show that these oscillatory mechanisms of 
successful memory formation remain relevant 
in old age (Sander et al., 2020; see Figure 7). 

In addition, multimodal analyses revealed a 
clear structure–function relationship between 
the integrity of memory-related brain regions 
and the strength of the oscillatory subsequent 
memory effect. In particular, older adults’ 
lower structural integrity of the inferior fron-
tal gyrus (IFG), a region known to be involved 
in elaboration processes, was accompanied 
by reduced subsequent memory effects in 
the alpha frequency. Taken together, these 
results indicate that memory representations 
tend to be formed with fewer details with 
advancing adult age (Sander et al., 2020), 
with downstream consequences for long-term 
maintenance and forgetting (see Fandakova 
et al., 2020).
Recent results from another study support the 
hypothesis that older adults form less detailed 
representations than younger adults. Using 
representational similarity analysis, we com-
pared the similarity of spatiotemporal EEG 
frequency patterns during initial encoding in 
relation to subsequent recall performance in 
younger and older adults (Dissertation Verena 
Sommer; Sommer et al., 2019). Specifically, 
we addressed the question whether successful 
memory is reflected in relatively more distinct 
or relatively more similar patterns of neural 
activity in younger and older adults. We found 
that the association between memory success 
and pattern similarity differed between young 
and older adults, suggesting age differences 
in basic cognitive encoding processes. For 
older adults, better memory performance 
was linked to higher similarity during early 
stages of encoding. For younger adults, lower 
similarity during later periods of encoding 
was positively related to memory performance 

Research Project 2: Lifespan Age Differences in Memory Representations 
(LIME)

LIME investigates mechanisms of memory formation, consolidation, and retrieval, with a focus 
on the ways in which these mechanisms change across the lifespan (see Sander et al., 2012). 
The project addresses the fundamental question whether aging-induced decrements in the dis-
tinctiveness of neural representations contribute to age-related losses in memory performance 
during adulthood and old age. Providing answers to this question requires the coordination of 
concepts and methods from lifespan psychology, cognitive neuroscience, and computational 
neuroscience. Accordingly, the project relies on experimental research designs, advanced multi-
modal imaging methods, and computational modeling. The project continues and broadens the 
work of Myriam Sander’s Minerva Group, which was established in 2016.
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(see Figure 8). These results suggest that older 
adults rely more on encoding the general gist 
of stimuli, reflected in increased early encod-
ing similarity, whereas young adults tend to 
form and encode mental images with distinct 
details, reflected in increased dissimilarity 
during later phases of encoding.
In our ongoing studies, we take a closer look 
at adult age differences in representational 
patterns. In a recent functional magnetic 
resonance imaging (fMRI) paradigm, we went 
beyond the mass-univariate characterization 
of neural specificity at the category level, 
and instead used representational similar-
ity analyses to relate memory performance 
differences between age groups to neural 

pattern stability across repeated exposures, 
and to neural pattern similarity of different 
exemplars within one semantic category rela-
tive to the similarity of objects from different 
categories. Initial analyses suggest that the 
stability or self-similarity of neural represen-
tations at the item level, relative to their simi-
larity to other items of the same category, is 
negatively related to adult age and positively 
related to memory performance.
Adaptation paradigms offer yet another 
approach to probe the specificity of represen-
tations. These paradigms rest on the assump-
tion that neuronal populations reduce their 
responses (i.e., adapt) when stimulus features 
to which they are sensitive are repeated. 
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Figure 7.  (a) Time-frequency plot of subsequent memory effects (thus, the difference in power of recalled vs. not-recalled word pairs) in theta 
and alpha/beta power, collapsed across age groups. (b) Power modulations in theta (left) and alpha/beta (right) frequencies predict single 
trial accuracy in both younger and older adults. (c) Alpha/beta band power is more predictive for memory recall in participants with high 
cortical thickness of the inferior frontal gyrus (IFG) than in those with lower cortical thickness, as shown by displaying predicted probabilities 
of varying alpha power for IFG quantiles. (d) Distribution of older and younger adults across different levels of structural integrity of the IFG 
(represented by quantiles). Most of the participants with low cortical thickness are older, indicating that reduced memory performance in older 
adults can be attributed to lower structural integrity of the IFG, which is related to smaller subsequent memory effects in alpha/beta power 
(adapted from Sander et al., 2020).
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studied word–scene pairs followed by several rounds of cued recall. The quality of memory representations was 
defined by the fate of the individual pair across the course of the experiment. The figure shows the proportion 
items with high, medium, and low memory quality for young adults (YA) and older adults (OA). Older adults have 
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Spectral representational similarity analysis methodology. Frequency vectors from every time point of stimulus 
1 are Pearson-correlated with frequency vectors from every time point of stimulus 2 (corr(ts1, ts2)) resulting in a 
time-time similarity matrix representing the similarity of the frequency patterns of these two stimuli at all pos-
sible time-time combinations at one electrode. (c) Time-time clusters with the corresponding topography (d) in 
which the stimuli of different memory quality reliably differed from another in each age group. Whereas higher 
similarity in an early (positive) cluster is related to a higher recall probability in older adults, higher distinctive-
ness (negative cluster) is beneficial for memory performance in younger adults (adapted from Sommer et al., 
2019).
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The magnitude of adaptation is thus a direct 
measure of representation specificity. In a 
lifespan EEG study, we investigated whether 
differences in adaptation magnitudes predict 
differences in memory performance between 
children, young adults, and older adults 
(Dissertation Verena Sommer). To this end, 
we varied the number of exposures and the 
degree of similarity to other stimuli of visually 
presented objects. Event-related potentials 
displayed adaptation effects in all age groups 
and were associated with memory specific-
ity. Our findings demonstrate that adaptation 
effects reflect encoding mechanisms that 
facilitate the formation of stimulus-specific 
memory representations, again highlighting 
their significance as neural indicators of indi-
vidual differences in episodic memory across 
the lifespan. The extension of this investiga-
tion to child development was accomplished 
in collaboration with Sarah Weigelt (formerly 
Ruhr-Universität Bochum, now Technische 
Universität Dortmund). 

Research Area 2: Effects of Context on 
Memory Representations
Successful memory is greatly aided by the 
spatial and temporal settings of an event, 
commonly referred to as its context. This 
dependency of memory on context increases 
with advancing adult age (Lindenberger & 
Mayr, 2014). At the same time, and somewhat 
paradoxically, older adults find it particularly 
difficult to actively retrieve specific object–
context associations. Based on these observa-
tions, our studies aim at a better understand-
ing of age differences in the contextualization 
of memories and the precise conditions under 
which memory performance benefits from 
context reinstatement.
In a large multimodal study that combined 
EEG, functional and structural MRI, and eye 
tracking, we have been investigating how 

context shapes younger and older adults’ 
memories for objects (Dissertation Anna 
Karlsson; see Figure 9a). We established a 
high-resolution multiband fMRI sequence 
that will allow us to track functional activa-
tions at the level of hippocampal subfields. 
So far, our behavioral results support the 
well-known observation of lower pair memory 
performance in older adults compared to 
younger adults, with no age group differ-
ences in object memory. For object memory 
performance, context reinstatement was 
beneficial in both age groups, and seeing an 
object in both a familiar and a new context 
impaired performance. However, pair memory 
was only reduced when participants saw an 
object in a familiar, incorrect context, but not 
with a new context. These results suggest dif-
ferent contributions of familiarity and novelty 
detection for object and pair memory (see 
Figure 9b). Our electrophysiological results 
suggest that power modulations during 
encoding, as indicated by subsequent memory 
effects in alpha/beta band and theta band 
power measured with EEG, predict single-trial 
accuracy for both objects and object–context 
pairs. Interestingly, alpha/beta desynchroniza-
tion was modulated by both context condition 
and age group. Larger desynchronization was 
related to a larger beneficial effect of context 
for pair memory when the context was old as 
compared to familiar, and more so in younger 
than in older adults. This result suggests that 
younger adults’ deeper elaboration dur-
ing encoding is a way to establish a reliable 
representation of the object–context pair that 
comes with a higher probability of recall. We 
are currently following up on these findings 
by investigating learning-related changes 
in neural patterns of object-specific repre-
sentations in the hippocampus as captured 
by fMRI. 
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Figure 9.  (a) Experimental paradigm of the multimodal study that combined EEG, functional MRI, and structural MRI to investigate the effect 
of context on memory (Dissertation Anna Karlsson). Participants were first familiarized with pictures of objects in the scanner to measure 
object-specific activation patterns. The main experiment consisted of an object–context learning paradigm during which EEG was assessed. 
This was followed by a postlearning fMRI measurement intended to reveal changes in memory representations. Finally, participants took a 
recognition memory test in which objects were presented with either the original learning context, a familiar context, or a new context. We 
first tested their memory for the object, followed by the question whether the object–context pair was the same as during learning. (b) First 
behavioral results: Corrected recognition scores (hits minus false alarms) for the different context conditions (old/familiar/new) as a function 
of age for object memory (left) and pair memory (right). Age groups differ when the retrieval of object–context pairs is required, but not when 
only objects need to be recalled. Context reinstatement (original context) benefits performance in both age groups, and seeing an object with a 
familiar, but incorrect context impairs performance. 
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Research Project 3: The Berlin Aging Studies (BASE & BASE-II)

In the course of the 20th century, average life expectancy almost doubled. More and more 
individuals will experience additional years of life between the ages of 70 and 100+. What do 
these added years mean in terms of functional capacity and quality of life? And how do the 
years and months preceding death in old age differ from the years before? In concert with other 
longitudinal studies, the Berlin Aging Studies provide a basis for answering questions of this 
sort. The specific focus of the BASE project at the Center for Lifespan Psychology is on cogni-
tive, psychosocial, and methodological aspects in the study of human aging. 
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For more than three decades, members of 
the Center have been investigating age- and 
death-related changes in psychological 
functioning in the context of the Berlin 
Aging Study (BASE; Baltes & Mayer, 1999; 
Lindenberger et al., 2010) and the Berlin 
Aging Study II (BASE-II; Demuth et al., 2019). 
Both studies are highly collaborative and 
multidisciplinary, involving researchers from 
institutions inside and outside Berlin. The two 
studies also take part in the Lifebrain con-
sortium, which is funded under the European 
Union Horizon 2020 Framework Programme 
(Walhovd et al., 2018; cf. p. 139).

The Berlin Aging Study (BASE)
Longitudinal data in BASE are available for 
eight measurement occasions spanning more 
than 18 years, and mortality-related informa-

tion has been updated at regular intervals. 
Mrs. A. was one of the 516 individuals who 
started participating in BASE almost 30 years 
ago. After having participated in all of the 
seven measurement occasions that followed 
the initial assessment, she died in December 
2019 at the age of 107. As Figure 10 shows, 
she led an active life in her own home until 
a fall forced her to move into a nursing care 
institution about three months before her 
death. Additional biographical data reveal 
what a remarkable person she was (see 
Figure 11). Her life history reminds us that the 
data we analyze are greatly abstracted and 
impoverished representations of real people.
As in previous years, the BASE data have con-
tinued to provide the basis for new original 
publications on individual differences in late-
life development (e.g., Mueller et al., 2018). 

Figure 10.  BASE participant Mrs. A., aged 106, at her home during a visit by BASE colleagues Denis Gerstorf and 
Sandra Düzel in 2018.

©  MPI for Human Development
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The presence of similar or identical measures 
in BASE and BASE-II (see below) allow for 
estimates of cohort differences in various 
aspects of normal aging, such as control be-
liefs (Gerstorf et al., 2019) and cardiovascular 
health (König et al., 2018). The results from 
these studies document the extent to which 
societal changes can influence the course of 
normal aging in desirable directions within 
relatively short periods of time.

The Berlin Aging Study II (BASE-II)
The Psychology Unit of BASE-II aims at 
obtaining a comprehensive picture of age-
related differences and changes in brain and 
behavior. In search of mechanistic explana-
tions for individual differences in normal 
aging, we use advanced statistical modeling 
techniques to investigate the impact of risk 
factors, such as metabolic syndrome and 
loneliness, and protective factors, such as 
physical activity.
Adults’ brains differ reliably in the onset 
and degree of age-related volume losses. 
Age-related changes in cognition have been 
associated with differences in structural 
brain parameters, including cerebral white 
matter (WM) microstructure, hippocam-
pal (HC) volume, as well as the integrity of 
neurotransmitter systems such as the locus 
coeruleus. By combining newly developed 
semiautomatic analysis procedures to assess 
HC subfield volumes with structural equa-
tion modeling techniques, Bender et al. 
(2020) found that structural characteristics 
of limbic WM regions and HC volume jointly 
contribute to verbal learning in older adults. 
Moreover, rates of shrinkage of brain regions 
and cognitive changes were exacerbated 
by hypertension and metabolic syndrome. 
Düzel, Buchmann et al. (2018) used structural 
equation modeling to set up a latent factor 
of metabolic load that was associated with 
indicators of physical health in both men and 
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Figure 11.  BASE participants’ score trajectories in the 
Digit Letter test, with Mrs. A.’s scores highlighted in 
red. At the age of 106 (larger dot), her score was still at 
the level of the average 90-year-old BASE participant.
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Lifebrain
BASE and BASE-II are participating in Lifebrain, a consortium of European 
studies funded by the EU Horizon 2020 Framework Programme. Lifebrain aims 
at identifying determinants of healthy lifespan development by integrating 
and harmonizing data and results from 11 large and predominantly longitu-
dinal European samples from seven countries. This has yielded a database of 
fine-grained measures focusing on brain and cognition from more than 7,000 
individual participants. A further goal of Lifebrain is to develop better statisti-
cal tools and routines for meta-analyzing longitudinal data.

Lifebrain consortium members also conducted a qualitative study to collect views and attitudes on the 
brain, personalized brain health, as well as interest in maintaining a healthy brain. Interviews were conduct-
ed in Spain, Norway, Germany, and the United Kingdom (Friedman et al., 2019). A global brain health survey 
at https://nettskjema.no was launched in 2019 to systematically explore public perceptions of personalized 
brain health.

www.lifebrain.uio.no
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women. In men, the metabolic load factor was 
also related to fluid intelligence. In a study 
conducted with colleagues from RHYME, 
structural integrity of the LC integrity was 
found to correlate positively with individual 
differences in learning and memory, both 
across age groups and within the group of 
older adults (Dahl et al., 2019; for details, see 
pp. 128 ff.)
In another line of work, we have examined 
neurobiological correlates of associations 
between psychosocial factors and cognitive 
performance. In particular, we have focused 
on people’s future time perspective (FTP). 
In a special issue of GeroPsych (Düzel & 
Gerstorf, 2018a), we compiled five empirical 
reports from different areas of psychology 
to showcase the multifaceted nature of FTP, 
delineating its antecedents, correlates, and 
consequences at experiential, physiological, 
and behavioral levels of analysis. For instance, 
Düzel, Drewelies et al. (2018) reported that 
FTP dimensions assessing cognitive and physi-
cal future lifestyles are differentially linked 
with brain regions known to process future 
planning and represent bodily states, respec-
tively. In a study on loneliness, we found that 
individuals with higher self-reported loneli-
ness tended to have smaller gray matter vol-
umes of brain regions that are central to cog-
nitive processing and emotional regulation, 
even after statistically controlling for social 
network size (Düzel et al., 2019). Presumably, 
individuals reporting higher loneliness might 
be less likely to engage in active, socially and 
cognitively stimulating lifestyles that, in turn, 
might contribute to brain maintenance and 
the preservation of cognitive abilities (Nyberg 
& Lindenberger, 2020). Taken together, these 
results suggest that psychosocial behav-
iors and cognitive aging are linked through 
multiple neurobiological mechanisms and 
pathways. A mechanistic and individualized 
understanding of these links might facilitate 

the design of effective strategies for preserv-
ing cognitive health in old age.
The physical environment and neighborhood 
characteristics are also likely contributors 
to individual health and well-being. Some 
regional characteristics such as noise and 
pollution affect health directly, whereas 
other regional characteristics might affect 
health and well-being indirectly by either 
providing resources or limiting their use. To 
explore such dependencies, BASE-II has linked 
georeferencing data to brain characteristics 
at the individual level. Motivated by animal 
models of enriched environments, we used 
confirmatory factor analysis to represent the 
structural integrity of three brain regions at 
the latent level and then explored associa-
tions between brain integrity and the relative 
amounts of forest, urban green, water, and 
wasteland around the home address. A posi-
tive association between amygdala integrity 
and forest coverage was found, pointing to its 
potentially salutogenic effects (Kühn, Düzel 
et al., 2017). This line of work will be pursued 
further in collaboration with the Lise Meitner 
Group for Environmental Neuroscience led by 
Simone Kühn (see pp. 185 ff.).

Future Research Directions 
In the meantime, multiple waves of data have 
been collected in BASE-II, turning it into a 
veritable longitudinal data set, with currently 
up to 8 years of longitudinal data. We are 
now setting up structural equation models 
that quantify level and change dependencies 
among cognitive abilities, the integrity of 
various brain regions, and their interrelations. 
We also continue our efforts to harmonize 
behavioral and MR data across the various 
studies and sites of the Lifebrain consortium 
to aid cross-country comparison and gener-
alization. An initial result of this approach is 
a study reporting associations between self-
reported sleep and hippocampal atrophy (Fjell 
et al., 2020). 
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Overview of the Berlin Aging Study (BASE)
The multidisciplinary Berlin Aging Study (BASE), initially directed by the late Paul B. Baltes and Karl Ulrich Mayer, was started in 1989. 
Ulman Lindenberger is the current BASE speaker. The study spans eight measurement occasions spaced over 18 years. Its distinguishing 
features include (1) a focus on the very old (70 to 100+ years); (2) a locally representative sample, stratified by age and sex; and (3) a 
broad-based interdisciplinarity (originally involving two research units from the Freie Universität Berlin, Internal Medicine and Psychiatry, 
and two from this Institute, Sociology and Psychology). In addition to discipline-specific topics, four integrative theoretical orientations 
guide the study: (1) differential aging, (2) continuity versus discontinuity of aging, (3) range and limits of plasticity and reserve capacity, 
and (4) aging as a systemic phenomenon.

The initial focus of BASE (1990–1993) was to obtain a heterogeneous sample, stratified by age and sex, of individuals from the western 
districts of Berlin aged 70 to 100+ years. A core sample of 516 men and women completed the Intensive Protocol comprising detailed 
measures from all four participating disciplines. Seven longitudinal follow-ups involving different depths of assessment were completed 
at approximately 2-yearly intervals. Details of the research design and assessment protocols can be found on the BASE website. The core 
sample formed the basis of the analyses reported in two monographs (see Baltes & Mayer, 1999; Lindenberger et al., 2010). Current work 
uses the longitudinal data to address issues such as variability and change, mortality prediction, self-related change, and genetic and 
socioeconomic predictors of cognitive change.

www.base-berlin.mpg.de

The Berlin Aging Study: International Research Group
Julia A. M. Delius MPI for Human Development, Berlin, Germany
Alexandra M. Freund University of Zurich, Switzerland
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Dana Kotter-Grühn North Carolina State University, Raleigh, USA
Shu-Chen Li Technische Universität Dresden, Germany
Ulman Lindenberger MPI for Human Development, Berlin, Germany (Speaker)
Nilam Ram Pennsylvania State University, University Park, USA
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Elisabeth Steinhagen-Thiessen Charité Universitätsmedizin Berlin, Germany
Gert G. Wagner MPI for Human Development, Berlin, Germany (Max Planck Fellow)

Overview of the Berlin Aging Study II (BASE-II)
The central objective of the multidisciplinary and multi-institutional longitudinal Berlin Aging Study II (BASE-II; see Bertram et al., 2014) 
is to promote a better understanding of individual differences and trajectories in cognitive, psychosocial, and physical functioning by 
integrating multidisciplinary perspectives and data. In doing so, it conceives of aging as a systemic phenomenon and seeks to delineate 
sources of heterogeneity in aging trajectories. BASE-II samples molecular genetic and immunological markers and uses instruments 
from the German Socio-Economic Panel (SOEP) that provide georeferencing data and information about participants’ socioeconomic 
background and living conditions. BASE-II is structured into four research units: (1) Psychology, (2) Sociology (including Economics) and 
Survey Methods, (3) Medicine (including Immunology), and (4) Molecular Genetics. Like its predecessor BASE, BASE-II follows a longi-
tudinal design: At the first wave of measurements (T1), the BASE-II sample consisted of 1,600 participants aged 60 to 80 years and 600 
individuals aged 20 to 35 years. Data collection of the first wave was completed in 2014. In close collaboration with Simone Kühn, eli-
gible BASE-II participants (n = 445) were additionally invited for a structural magnetic resonance imaging (MRI) assessment of the brain, 
comprising T1-weighted imaging, resting state data, diffusion tensor imaging, and high-resolution imaging of the hippocampus. In 2015, 
this MR subsample was invited again for another wave of cognitive and psychosocial assessments and a second MRI session (n = 327). In 
November 2017, the older cohort of 1,600 men and women from the original BASE-II sample was re-invited in the context of the project, 
Sex- and Gender-Sensitive Prevention of Cardiovascular and Metabolic Disease in Older Adults in Germany (GendAge, funded by the 
Federal Ministry of Education and Research). GendAge includes most of the medical and biological assessments of T1, along with a third 
wave of cognitive and psychosocial assessments. In addition, accelerometers are used to track participants’ physical activity and sleep for 
a week. This data collection is ongoing and will contribute to BASE-II, allowing us to further investigate individual differences in aging 
trajectories (for an overview, see Demuth et al., 2019).

www.base2.mpg.de
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Research Project 4: Mechanisms and Sequential Progression of Plasticity

This project addresses the questions of whether and how plasticity contributes to develop-
ment across the lifespan. We use training studies as a method of choice to probe antecedents, 
mechanisms, and consequences of plastic change across different age groups and functional 
domains. Special attention is given to the dynamics of plastic changes across structural, func-
tional, and behavioral levels of analysis.
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The human brain is plastic—it possesses the 
capacity to implement lasting structural 
changes in response to environmental de-
mands that alter its functional and behavioral 
repertoire (Lindenberger & Lövdén, 2019; 
Wenger & Kühn, in press). We assume that 
plasticity is induced by a mismatch between 
environmental demands and an individual’s 
current behavioral and neural resources. It 
is metabolically costly and competes with 
the need for stability, which facilitates the 
development of a well-orchestrated set of 
habits and skills. The resulting interplay of 
mechanisms promoting plasticity versus 
stability organizes development into mul-

tiple alternating and sequentially structured 
periods that together support the hierarchical 
organization of cerebral functions and behav-
ior (Lindenberger, 2018). 

Plasticity in the Motor Domain
The acquisition of skilled motor performance 
provides a rich testing ground for exploring 
the mechanisms and progression of plastic-
ity. In a pioneering study, we acquired up 
to 18 structural magnetic resonance (MR) 
images over a 7-week period while 15 right-
handed participants practiced left-hand 
writing and drawing (Wenger, Kühn et al., 
2017). After 4 weeks of training, we observed 
increases in gray matter in both the left and 
right primary motor cortices relative to a con-
trol group; another 3 weeks later, these dif-
ferences were no longer reliable. Time-series 
analyses confirmed that gray matter in both 
primary motor cortices expanded during the 
first 4 weeks and then partially renormalized, 
in particular in the right hemisphere, in the 
presence of continued practice and increasing 
task proficiency. Based on this pattern, which 
is in good agreement with macroscopic and 
microscopic curvilinear changes observed in 
nonhuman primates and rodents, we have 
proposed that plastic changes might often 
follow a sequence of initial tissue expansion, 
selection of the most suitable circuitry, and 
partial or complete renormalization to base-
line levels (see Figure 12; Wenger, Brozzoli 
et al., 2017; see also Lindenberger & Lövdén, 
2019).
Motor skill acquisition involves brain regions 
that vary considerably in their developmen-
tal trajectories during childhood. Frontal 
regions, which dominate initial learning 
and are thought to contribute to the de-
mand–capacity mismatch representation that 
triggers a plastic response, mature relatively 
late in childhood (Fandakova et al., 2018). 
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Figure12.  Schematic illustration of potential cellular changes underlying gray mat-
ter volume expansion and renormalization as detectable with magnetic resonance 
(MR) images (adapted from Wenger, Brozzoli et al., 2017).
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In contrast, primary motor regions, which 
dominate later phases of learning, mature 
relatively early. To evaluate the consequences 
of these maturational differences, we have 
examined age differences in motor sequence 
learning between young adults and children 
(8–10 years). Preliminary results suggest 
that both children and adults show decreas-
ing frontal activation with increasing task 
proficiency. However, while adults showed 
a corresponding selective increase in motor 
cortex activation over time, children activated 
primary motor cortex both during early and 
late phases of learning (see Figure 13). In the 
context of extended skill acquisition, these 
age differences in activation may suggest that 
structural plastic changes in primary motor 
areas manifest themselves/occur earlier in 
children than in young adults.

Plasticity in the Auditory Domain
Music expertise relies on several sensory 
systems and the motor system and also poses 
high demands on control processes. Therefore, 
it offers a promising model for studying how 
specific forms of experience interact with 
preexisting individual differences to mold 
the structure and function of the brain. In an 
initial investigation, we investigated plastic 
changes in aspiring professional musicians 
who were preparing intensely for a highly 
competitive entrance exam at a university 
of the arts in comparison to skilled amateur 
musicians. Over the course of 6 months, we 
observed decreases in gray matter in the 
aspiring professional musicians in the left pla-
num polare, posterior insula, and left inferior 

frontal orbital gyrus. The left planum polare, 
where the largest cluster of structural change 
was found, also showed increasing func-
tional connectivity to other regions known to 
contribute to music expertise (see Figure 14). 
This increased connectivity was also reflected 
in analyses based on graph theory, pointing 
to the participation of the planum polare in a 
complex network. These results may provide 
further evidence for the expansion–renormal-
ization pattern of brain structure in humans 
in the auditory domain if we assume that we 
captured the second portion of an expansion–
renormalization cycle.
In a study that is currently underway, we aim 
to delineate patterns of plasticity over time in 
both the auditory and the visual domain and 
to better characterize the interplay between 
structural and functional plastic changes 
(Dissertation Eleftheria Papadaki). A group of 
young adults will be trained to discriminate 
between short melodies based on so-called 
microtonal intervals, which are consider-
ably smaller than one semitone. During the 
8-week training period, participants will 
undergo weekly structural and functional MR 
assessments. A second group will be trained 
in a visual discrimination task and will also 
be scanned eight times during the training 
period, allowing us to probe the applicability 
of the expansion–renormalization model in 
yet another sensory domain. 

Boosting Plasticity in the Aging Brain
In the context of “Energizing the Hippo-
campus in Aging Individuals (EnergI),” a 
consortium funded by the Federal Ministry of 
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Figure 13.  The learning of a novel motor sequence is associated with greater changes in left motor cortex activity in adults than in children. 
While adults’ motor cortex activity increased with the repeated execution of the sequence and increasing proficiency, children’s motor cortex 
was already engaged early on during learning.
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Education and Research, we also conducted 
a large-scale training study with 160 healthy 
older adults. Inspired by rodent models of 
environmental enrichment, the central goal of 
this study is to test the hypothesis that plastic 
changes in the hippocampal formation are 
more easily induced when an aerobic fitness 
intervention is combined with a cognitive 
intervention. Participants were randomly 
assigned to one of four groups: a combined 
language-learning and bicycle ergometer 
training group; a bicycle-ergometer only 
group; a language-learning only group; and 
an active control group participating in a 
book club. The study was carried out in 2017 
and 2018 and allowed participants to make 
the training programs an integral part of their 
daily lives using tablets with a language-
learning app and bicycle ergometers deployed 

at their homes. The data set comprises: 
(a) structural MR measurements taken before 
training (pretest), after 3 months of training, 
and after 6 months of training (posttest); 
(b) multiple cognitive and physical fitness 
measures assessed before and after training; 
and (c) day-to-day data on training intensity, 
training duration, and motivational states. 
Data analyses are currently underway, with 
special attention given to the joint effects of 
the two interventions and the specific effects 
of physical exercise (Dissertation Sarah Polk, 
supervised by Sandra Düzel, BASE-II project).

Plasticity in Task-Switching in Childhood
Childhood is characterized by maturational 
changes in brain structure and function and in 
the organization of behavior. These develop-
mental changes are particularly pronounced 
for cognitive control processes, such as the 
ability to flexibly shift between different 
task sets, and their neural manifestations 
(Fandakova et al., 2017). In collaboration 
with Silvia Bunge, University of California, 
Berkeley, USA, we have conducted a training 
study to examine individual differences in 
behavioral and neural manifestations of task-
switching plasticity in 200 children aged 8 to 
11 years (Dissertation Neda Khosravani). In a 
total of 27 sessions spread out over 9 weeks, 
children in the experimental group practiced 
switching among sets of different tasks. The 
performance of children in this group will be 
compared to children in the active control 
group, who trained the identical tasks but 
without the need to constantly switch among 
them, and children in a passive control group, 
who did not practice any of the tasks. To 
assess training progress, all children were as-
sessed behaviorally four times during practice. 
In addition, about half of the participants in 
each group also underwent functional and 
structural MR measurements four times. 
One of the goals of this study is to extend 
the observation of the temporal progression 
of behavioral and neural manifestations of 
plasticity into childhood.
In collaboration with the Brain Imaging 
Methods project (see pp. 149 ff.) we also 
adopted a novel imaging sequence for this 
study to examine practice-related changes in 

Figure 14.  (a) While preparing for their entrance exam, aspiring professional 
musicians showed decreases in gray matter in the left planum polare, posterior 
insula, and left inferior frontal orbital gyrus. (b) In the aspiring professionals, but 
not among the amateur musicians, the biggest cluster of structural change, the left 
planum polare, showed increasing functional connectivity to the left and right audi-
tory cortex, left precentral gyrus, left supplementary motor cortex, left and right 
postcentral gyrus, and left cingulate cortex.
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the myelination of cortical gray matter over 
time. Based on recent findings that indi-
vidual differences in the fidelity with which 
incoming visual information is represented 
in the brain contributes to learning success 
in childhood (Fandakova et al., 2019), we aim 
to relate practice-related structural changes 
to changes in task-set representations over 
time. With respect to behavioral manifesta-
tions of plasticity, ongoing analyses focus 
on individual differences in the trajectory of 
practice-related change across practice ses-
sions and how they are related to untrained 
measures of task-switching, processing speed, 
and cognitive control.
Furthermore, we also seek to understand how 
task-switching plasticity is modulated by 
gonadal hormone changes associated with 
puberty onset. Puberty onset typically occurs 
at around 8 years of age, with considerable 
variation in onset age across individuals. We 
collected saliva and hair samples to measure 
pubertal status via gonadal hormones and 
to examine whether individual differences in 
pubertal status are associated with behav-
ioral and neural markers of plasticity. Here, 
we are particularly interested in testing the 

hypothesis that gonadal hormone changes 
associated with puberty onset influence cog-
nitive development by altering the potential 
for plastic change (Laube, van den Bos, & 
Fandakova, 2020).

Curiosity and Surprise in Childhood
Along with surprise, curiosity, or the desire to 
acquire new information, may play an impor-
tant role for learning and plasticity, especially 
during the early phases of a plastic episode 
when individuals are exploring the task space. 
We used trivia questions to examine the 
effects of curiosity and surprise on learning 
in children aged 10 to 14 years. Children of 
all ages showed better memory for questions 
that they were curious about. In contrast, 
higher post-answer surprise, or the discrepan-
cy between children’s initial curiosity and the 
interest in the actual trivia answer, benefited 
learning more strongly in adolescents than 
in children (see Figure 15). Following up on 
these findings, we are currently investigating 
how curiosity and surprise can be harnessed 
to facilitate learning and generalization of 
scientific concepts in adolescence.

Key References

Fandakova, Y., Leckey, 
S., Driver, C. C., Bunge, 
S. A., & Ghetti, S. (2019). 
Neural specificity of 
scene representations 
is related to memory 
performance in child-
hood. NeuroImage, 199, 
105–113. https://doi.org​
/10.1016/j.neuroimage​
.2019.05.050

Laube, C., van den 
Bos, W., & Fandakova, 
Y. (2020). The relation-
ship between pubertal 
hormones and brain 
plasticity: Implications 
for cognitive train-
ing in adolescence. 
Developmental Cognitive 
Neuroscience, 42, Article 
100753. https://doi.org​
/10.1016/j.dcn.2020​
.100753

Figure 15.  Children showed greater learning benefits for trivia questions that they were more curious about. In adolescents, learning was also 
modulated by how interesting they thought the actually presented answer was, such that they were more likely to remember the answer when 
initial curiosity was low but post-answer interest was high. In contrast, learning in younger children depended primarily on their initial curios-
ity and less so on post-answer interest. 
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The project has continued its major focus on 
analyzing electroencephalographic (EEG) data 
of skilled musicians playing music together. 
In our initial study with guitar duets, we 
discovered that interpersonally coordinated 
actions are preceded and accompanied by 
within-brain synchrony and between-brain 
oscillatory couplings (Lindenberger et al., 

2009). We replicated and extended these 
original findings in a series of follow-up stud-
ies. In analyses of hyper-brain networks based 
on EEG data from a guitar quartet (Müller, 
Sänger et al., 2018), we found that within-
brain connections tend to operate at higher 
frequencies (e.g., beta, gamma) than be-
tween-brain connections (e.g., delta, theta)—
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Research Project 5: Interactive Brains, Social Minds

In everyday life, people often coordinate their actions. Common examples include walking 
with someone at a set pace, playing team sports, dancing, playing music in a duet or group, as 
well as a wide range of social bonding behaviors, such as gaze coordination between mother 
and infant or between partners. The developmental and social significance of these interper-
sonally coordinated behaviors is undisputed, but little, if anything, is known about the brain 
mechanisms that regulate their temporal dynamics. The Interactive Brains, Social Minds project 
investigates behavioral, somatic, and neural mechanisms that permit individuals to coordinate 
their behavior in time and space (see Figure 16).
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Figure 16.  A forward model of interpersonal action coordination. Drawing on the work of Steven M. Boker, 
Wolfgang Prinz, Daniel Wolpert, and others, our model assumes that interpersonal action coordination is based 
on a set of linked representational layers. The single-person layer is shaded in gray. Individuals acting together 
attempt to synchronize their forward model regarding their own actions with their forward model regarding the 
other person’s actions. Highly skilled individuals, such as dancers or musicians, may represent jointly performed 
activities as a unified suprapersonal action with a joint forward model and partially joint sensory feedbacks. The 
various representational layers of the actors are intertwined by sensorimotor feedback loops (see also Sänger 
et al., 2011). 
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in line with our previous results on guitar 
duets. Furthermore, we observed evidence for 
hyper-brain modules that include nodes from 
two, three, or even four brains (see Figure 17). 
We also extended our analyses to explore the 
dynamics of interpersonal action coordina-
tion at neural and behavioral levels of analysis 
during free guitar improvisation. We found 
that guitarists’ brains were in sync with slow-
frequency modulations of guitarists’ acoustic 
signals. This provides evidence for brain–
behavior entrainment reflecting temporal 
dynamics of coordinated music performance 
(Müller & Lindenberger, 2019).
We also explored the utility of hyper-fre-
quency, hyper-brain networks in a data set 
of couples engaged in romantic kissing that 
was originally published in 2014. Oscilla-
tions in the alpha band played a central 
role in coordinating the two brains. Also, 
hyper-brain network strengths were higher 
and characteristic path lengths were shorter 
when individuals were kissing each other 
than when they were kissing their own hand. 
Between-brain strengths of theta oscillations 
(around 5 Hz) were reliably associated with 
reported partner-oriented kissing satisfaction, 
especially over frontal and central electrodes. 
Given our earlier observations of fronto-cen-
tral between-brain synchronization in guitar 
players, we suggest that these couplings 
reflect cell assemblies representing movement 
coordination among interacting partners.
During the reporting period, we also re-ana-
lyzed the cardiac, respiratory, and vocalizing 
data from 11 singers and 1 conductor engaged 
in choir singing, originally published in 2011. 
We showed in greater detail how cardiac, 
respiratory, and voice production subsys-
tems interact among each other both within 
and across singers as a function of whether 
a canon is sung in unison or in different 
voices. Notably, we found that the conduc-
tor’s hand movements are synchronized with 
each of the three subsystems (Müller et al., 
2018). With regard to network topology, we 
found that clustering coefficients as well as 
local and global efficiency were highest and 
characteristic path lengths, correspondingly, 
shortest when the choir sang a canon in parts 

as compared to singing it in unison. Further-
more, network metrics revealed a significant 
relationship to individuals’ heart rate, pre-
sumably indicating arousal, and to an index 
of heart rate variability, reflecting the balance 
between sympathetic and parasympathetic 
activity. Based on this work, we propose that 
network topology dynamics capture essential 
aspects of group behavior and may repre-
sent a potent biomarker of social interaction 
dynamics (Müller et al., 2019).
In a related line of work, the project has 
sought to devise new EEG paradigms that are 
suited to observe the behavioral functions of 
inter-brain synchrony under experimentally 
more controlled conditions (Dissertation 
Caroline Szymanski). In one of these studies 
(Szymanski, Pesquita et al., 2017), partici-
pants were asked to perform a visual search 
task either alone or with a partner. Local 
phase synchronization and between-brain 
phase synchronization were generally higher 
when partners attended to a visual search 
task jointly than when they attended to the 
same task individually. Also, between-team 
differences in behavioral performance gain 
during the joint condition were associated 
with between-team differences in local and 
inter-brain phase synchronization. These 
results suggest that phase synchronization is 
a neural correlate of social facilitation that 
might help to explain why some teams per-
form better than others. A second study has 
tested whether same-frequency, same-phase 
transcranical alternating-current stimulation 
(tACS) is associated with greater behavioral 
synchrony in a dyadic drumming task than 
no stimulation or stimulation that differs in 
phase and frequency. Contrary to expecta-
tions, both stimulation conditions were 
associated with greater dyadic drumming 
asynchrony relative to the sham (no stimula-
tion) condition. No influence of hyper-tACS 
on behavioral performance was seen when 
participants were asked to drum separately in 
synchrony to a metronome (Szymanski, Müller 
et al., 2017). These results indicate that the 
interactions between externally triggered and 
intrinsically generated frequencies and phases 
require further theoretical and empirical work.
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Figure 17.  Coupling strengths and connectivity brain maps while playing guitar in a quartet, assessed in a moving window approach. (a) Time 
course of within- and between-brain out-strengths in the four guitarists. (b) Brain connectivity maps and distribution of strengths within (left 
panel) and between (right panel) the brains at time window 5. (c) Brain connectivity maps and distribution of strengths within (left panel) and 
between (right panel) the brains at time window 48. Note that the colors in (a) to (c) correspond to the different guitarists. The time windows 
are indicated by dotted vertical lines in (a). Strong within- and between-brain connectivity is evident in the first time window (5), when guitar-
ist D (shown in yellow) is playing alone. In the second time window (48), when the musical theme begins to be repeated, strong within- and 
between-brain connectivity is evident in guitarist B (shown in red). (e) Modularity or community structures of hyper-brain networks with Z-P 
parameter space across the same time windows. Modules are coded by color. Note that most modules share nodes across two, three, or even 
four brains (adapted from Müller, Sänger, & Lindenberger, 2018).
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Research Project 6: Brain Imaging Methods in Lifespan Psychology

Research on human development seeks to delineate the variable and invariant properties of 
age-graded changes in the organization of brain–behavior–environment systems. In this vein, 
various magnetic resonance imaging (MRI) modalities, including magnetic resonance spectros-
copy (MRS), have become indispensable, as they allow for the noninvasive assessment of brain 
function, anatomy, microstructure, and metabolism.
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The two main goals of the Brain Imaging 
Methods project are to: (a) ascertain and 
improve the measurement quality of standard 
brain imaging protocols at the Center; and 
(b) complement the standard imaging reper-
toire by advanced sequences with enhanced 
interpretability that hold promise in eluci-
dating structural changes and physiological 
mechanisms related to maturation, learning, 
and senescence. In pursuing these goals, the 
project serves as a resource to other projects 
interested in imaging (e.g., Bender et al., 
2018; Dahl et al., 2019; Keresztes et al., 2017; 
Kleemeyer et al., 2017; see Figure 18).

Structural and quantitative MRI methods 
occupy a central place in the project. During 
the reporting period, the project has focused 
on: (a) T1-mapping by means of an MP2RAGE 
acquisition protocol to obtain estimates of 
laminar myelination across the cortical sheet; 
(b) myelin water fraction (MWF) imaging, 
which maps the fraction of short T2 relaxation 
rates quantitatively and appears to yield more 
valid estimates of myelin than other widely 
used methods; (c) advanced methods in high 
angular resolved diffusion imaging (HARDI), 
from which maps of water diffusion in brain 
tissue can be deduced that permit estimates 
of local axonal orientation and thereby enable 
the identification of particular fiber tracts in 
white matter; and (d) neuromelanin-sensitive 
high-resolution imaging of the brainstem to 
determine the individual position and extent 
of the loci coerulei (Dahl et al., 2019).
Functional MRI and MRS are used to provide 
maps and spectra of brain activity during 
task performance or at rest. The project takes 
special interest in: (a) functional imaging 
with high spatial or temporal resolution by 
exploiting multiband echo-planar imaging 
(MB-EPI) acquisition strategies; and (b) task-
related, time-resolved applications of proton 
MRS, with a focus on glutamate. Work on 
MR spectroscopy and MWF imaging, on the 
one hand, and on T1 mapping, on the other, 
has been done in collaboration with Jeffrey 
A. Stanley (Wayne State University, Detroit, 
USA) and José P. Marques (Donders Institute, 
Radboud University, Nijmegen, Netherlands), 
respectively. For more information about the 
Institute’s MRI facility, see p. 298.

T1 Mapping Using MP2RAGE With B1 Map 
Corrections
The longitudinal relaxation time T1 in the 
cortex is affected by the myelin content in 
the laminae. T1 mapping offers a noninva-

Figure 18.  Illustration of the anatomic-geometric 
heuristic for manual morphometry. (a) A representative 
slice of anterior hippocampal (HC) body following the 
visualization of the uncal sulcus. To facilitate tracing, 
the T2-weighted contrast has been inverted to mimic 
a T1-weighted image. (b) Placement of the ellipse 
and bisecting lines (the major and minor axes of the 
ellipse). (c) The minor axis bisecting the ellipse marks 
the point from which a vertical line is dropped to cre-
ate a boundary separating the subiculum from CA1/2, 
and CA 1/2 from CA3–4/DG, as shown in (d). Bottom: 
3-D illustrations of sagittal (e) and oblique coronal (f) 
views of manual subfield labeling in the HC body from 
one participant (adapted from Bender et al., 2018).
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sive method to determine cortical structures 
and their changes over time. We have been 
developing a new protocol that makes use of 
multiple MP2RAGE sequences developed by 
José Marques and colleagues for the accurate 
estimation of high-resolution T1 maps in the 
full brain. We have chosen tailored paired 
values for the inversion times to cover the 
whole range of T1 values in the brain. The 
resulting T1 map is then corrected by a B1 map 
to cancel hardware imperfections and radio 
frequency inhomogeneities across the brain 
(see Figure 19). The B1 mapping method used 
(Santoro et al., 2011) was optimized in-house 
for our studies. The full protocol for a 1 mm 
isotropic T1 map of the full brain of children 
takes about 16 minutes, with work in progress 
to reduce its duration.

Myelin-Water Fraction Imaging (MWF)
Based on a time series of T2-weighted MR 
images with increasing echo-times acquired 
by a 3D GRAdient and Spin-Echo (GRASE) 
sequence, MWF imaging evaluates the trans-
versal relaxation in a multiexponential man-
ner by applying a nonnegative least squares 
(NNLS) fitting algorithm. The fraction of short 
T2s (< 40 ms) provides an estimate of the 
portion of water molecules located between 
myelin sheaths, presumably reflecting the 
degree of myelination within white matter 
(Arshad et al., 2017).

High Angular Resolved Diffusion Imaging 
(HARDI)
Diffusion imaging captures the movement of 
water molecules, termed diffusion. Diffu-
sion in tissue is hindered by cell membranes. 
Therefore, the orientation-dependent dif-
fusion profiles provide information about 
tissue microstructure. For instance, when 
water molecules are observed in myelinated 
neuronal fibers, their diffusion is hampered 
less along than across fiber tracts. Hence, 
principal diffusion directions can be identified 
with the orientations of axonal tracts. Special 
MR protocols sensitized to the diffusion of 
water molecules in tissue allow to measure 
such diffusion orientation profiles. In his 
thesis, Maximilian M. Wichmann (2018), a 
master’s student in our project, determined 
the precision and estimates of accuracy of 
the analyzed principal diffusion directions 
as a function of the diffusion-sensitizing 
gradient scheme and the model to describe 
diffusion profiles. The tensor model was 
significantly outperformed by two competing 
models (sticks-and-ball, constrained spherical 
deconvolution).
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Figure 19.  Typical T1 map of a child’s brain (1 slice 
out of a 3D volume) obtained with our protocol using 
MP2RAGE and B1 map correction.  
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Research Project 7: Formal Methods in Lifespan Psychology

Since its foundation by the late Paul B. Baltes in 1981, the Center for Lifespan Psychology has 
sought to promote conceptual and methodological innovation within developmental psychol-
ogy and in interdisciplinary context. Over the years, the critical examination of relations among 
theory, method, and data has evolved into a distinct feature of the Center. The overarching ob-
jective of the Formal Methods project is to test theories, develop methods, and explore research 
designs that articulate human development across different timescales, levels of analysis, and 
functional domains. The temporal resolution of data relevant for lifespan research varies widely, 
from the millisecond range provided by behavioral and electrophysiological observations to 
the small number of occasions spread out across several years provided by longitudinal panel 
studies. The project is based on the premise that a comprehensive understanding of human 
development across the lifespan requires a person-oriented, multivariate, and longitudinal ap-
proach. Such high-density, large data sets offer great opportunities for discovery and hypoth-
esis testing, but also pose new theoretical and methodological challenges. The project meets 
these challenges by a strong emphasis on methodology, understood as the reciprocal interplay 
between concepts and methods that is at the heart of scientific progress.
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Andreas M.  
Brandmaier

Janne Adolf 
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In line with its interest in delineating and 
explicating individual differences in change, 
the project has continued and expanded its 
work on Structural Equation Modeling (SEM) 
and hierarchical state-space methods, both 
of which integrate a wide range of differ-
ent multivariate analysis techniques. During 
the reporting period, project members have 
shown how these approaches can assist 
researchers in: (a) optimally planning longi-
tudinal studies under constrained resources; 
(b) refining or modifying hypotheses through 
comprehensive exploratory data analysis; 
(c) appropriately modeling unequally spaced 
measurements, context effects, and individual 
differences in longitudinal research; and (d) 
modeling the dimensionality of age-related 
changes in cognition.

New Methods for Analyzing Change
Longitudinal panel studies are a key empirical 
method to chart between-person differ-
ences in behavioral and neural development. 
The project members have been working on 
developing and evaluating new methods to 
analyze change. Most dynamic models (e.g., 
cross-lagged panel models) currently in use in 
psychological research assume that measure-
ment occasions are equally spaced in time. 
This failure to account for unequal spacing of 
measurement occasions may seriously bias 
parameter estimates. Driver, Oud, and Voelkle 
(2017) have developed a software package 

for the estimation of hierarchical continuous-
time system dynamics, called ctsem (conti-
nous-time structural equation modeling). The 
package is suited for the analysis of panel 
data (repeated observations from more than 
one individual) and time-series data (repeated 
observations from one individual). Using 
stochastic differential equations coupled with 
a measurement model, ctsem accommodates 
any pattern of measurement occasions. ctsem 
can estimate relationships over time for mul-
tiple latent processes, measured by multiple 
noisy indicators with varying time intervals 
between observations (see Figure 20). With 
recent developments in hierarchical and 
nonlinear modeling, as well as Bayesian 
estimation (Driver & Voelkle, 2018a), param-
eters themselves can be modeled as slowly 
changing dynamic states. Coupled with the 
inclusion of event- and intervention-related 
effects over time (Driver & Voelkle, 2018b), 
this allows for the high level of model expres-
siveness that is necessary for developing 
and testing theories of development across 
multiple timescales. 
Andreas Brandmaier and Timo von Oertzen 
have continued their work on Ωnyx, a freely 
available software environment for creat-
ing and estimating SEM. The software offers 
a graphical user interface to facilitate the 
specification of models and includes a 
powerful back-end for performing parameter 
estimation (von Oertzen et al., 2015).
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Optimizing the Design of Longitudinal 
Studies
Longitudinal studies often require a large 
investment of resources. In earlier work, we 
have shown how design-related choices, 
such as the number of individuals or number 
of measurement occasions, affect statistical 
power and how optimal choices maximize the 
efficiency of longitudinal designs while keep-
ing power constant (Brandmaier et al., 2015). 
In the meantime, we have extended this 
framework to arrive at an integrated under-
standing of measures of precision, reliability, 
and effect size for individual differences in 
change (Brandmaier, von Oertzen et al., 2018).
Thus far, cognitive neuroscience has paid 
relatively little attention to questions of 
reliability and statistical power. For instance, 
surprisingly little is known about the psycho-
metric properties of measures attained from 
structural and functional magnetic resonance 
imaging (fMRI) protocols. We have introduced 
the intraclass effect decomposition (ICED) 
framework to overcome this shortcoming 
(Brandmaier, Wenger et al., 2018). With ICED, 
researchers can separate and quantify the 
effects of different measurement charac-
teristics, such as day, session, or scanner, on 

measurement reliability. Using this frame-
work, we showed that some standard designs, 
such as 5 minutes of resting-state functional 
connectivity assessment, come with low 
reliability that hardly affords any kind of sta-
tistical inference about individual differences. 
We hope that ICED will encourage and assist 
researchers in delineating sources of unreli-
ability and guide them in developing more 
efficient research designs.
To increase statistical power or achieve 
identical power with fewer measurements, 
planned missingness (PM) is a convenient 
but often overlooked design option. In PM 
designs, participants are tested on a random 
subset of all possible measurement occasions, 
thereby reducing potential resource bottle-
necks, such as those arising from limited 
availability of an MR scanner, as well as re-
search participants’ testing load. To find opti-
mal PM designs, we developed an asymptotic 
approach to generate, evaluate, and select 
optimal longitudinal designs for measuring 
change with PM (Brandmaier et al., 2020).
In research on adult cognitive development, 
available theories of change often posit 
nonlinear (e.g., exponential) decline. However, 
growth models used for data analysis typically 
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Figure 20.  Estimated latent processes from a simulated hierarchical dynamic system of fitness and exercise. After a motivation intervention 
temporarily increasing exercise levels, fitness rises more quickly until exercise drops back to an equilibrium level determined by specific charac-
teristics of the subject.
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test linear or quadratic polynomials, with 
less than 5% of the analyses being based on 
functions that are nonlinear in the parameters 
(Ghisletta et al., 2020). Given this apparent 
bias in favor of polynomial decomposition, 
Ghisletta and collaborators explored what 
conclusions about individual differences in 
change are likely to be drawn if research-
ers apply linear or quadratic growth models 
to data simulated under a conceptually and 
empirically plausible model of exponential 
cognitive decline. The simulation results show 
that fit statistics generally do not differenti-
ate misspecified linear or quadratic models 
from the true exponential model. Moreover, 
power to detect variance in change for the 
linear and quadratic growth models is low, 
and estimates of individual differences in 
level and change can be highly biased by 
model misspecification. The authors encour-
age researchers to also consider plausible 

nonlinear change functions when studying 
behavioral development across the lifespan.

Exploration and Model Testing
Building models fully informed by theory 
is impossible when data sets are large and 
theoretical predictions are not available 
for all variables and their interrelations. In 
such instances, researchers may start with a 
core model guided by theory and then face 
the problem of which additional variables 
should be included. In earlier work, we have 
shown that SEM Trees and Forests provide 
a straightforward solution to this variable 
selection problem (Brandmaier et al., 2016). 
SEM Trees hierarchically split empirical data 
into homogeneous groups sharing similar 
parameters of a model by recursively selecting 
optimal predictors from a potentially large set 
of candidate predictors. SEM Forests aggre-
gate predictive information over a set of trees 

Figure 21.  Path diagram representing meta-analytic estimates for standardized factor loadings of individual cognitive abilities on a general 
factor of levels (left) and standardized factors loadings of longitudinal slopes for individual cognitive abilities on a general factor of changes 
(right). Variances were omitted from the diagram. Reason. = Reasoning; Verbal know. = Verbal knowledge; Prosp. memory = Prospective 
memory (adapted from Tucker-Drob et al., 2019).

©  MPI for Human Development

Coupled Cognitive Changes in Adulthood

With advancing adult age, cognitive abilities such as memory, processing speed, and reasoning tend to 
decrease. At the same time, there are marked individual differences in rates of change, with some adults 
showing maintenance and select improvements and others showing precipitous decline. To shed light on the 
dimensionality of cognitive aging, we revisited a classical question posed by Patrick Rabbitt more than 25 
years ago: “Does it all go together when it goes?” Specifically, we conducted a meta-analysis to examine the 
degree to which changes in different cognitive abilities in adulthood and old age are correlated (Tucker-Drob 
et al., 2019). Across 22 unique data sets with over 30,000 individuals, a common factor of change accounted 
for 60% of the reliable variance in cognitive change (see Figure 21). The couplings among rates of changes 
increased with advancing adult age, presumably reflecting “dynamic dedifferentiation” or the increasing 
importance of an ensemble of common causes on cognitive change. Notably, abilities showing little average 
decline, such as verbal knowledge, contributed to common change to about the same extent as abilities 
showing pronounced average decline, such as perceptual speed. Hence, individuals who improve more on 
verbal knowledge relative to others are likely to decline less in perceptual speed. This generalized pattern of 
change adds to an important qualification to two-component theories of intellectual development in adult-
hood, such as the Cattell/Horn theory of fluid versus crystallized intelligence.

Box 1. 
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and yield a measure of variable importance 
that is more robust than corresponding mea-
sures from single trees. Variable importance 
guides researchers on what variables may be 
missing from their models and the underlying 
theories. In a recent application of SEM For-
ests, we investigated longitudinal trajectories 
of well-being toward the end of life using 
data from the German Socio-Economic Panel 
study. We found that individual differences in 
the decline of well-being are associated with 
factors related to physical health, social par-
ticipation, and perceived control (Brandmaier 
et al., 2017). 
Longitudinal data sets with dense observa-
tions generally offer great opportunities for 
discovery and hypothesis testing. There-
fore, we have merged the ctsem approach 
described above with SEM Trees into CTSEM 
Trees (Brandmaier et al., 2018). When the goal 
is variable selection to build predictive models 
with linear effects only, we introduced a fur-
ther method, regularized SEM, that brings the 
idea of regularization to SEM and allows one 
to build simple models from high-dimensional 
data while optimizing predictive accuracy 
(Jacobucci et al., 2019).
Ongoing work in this area extends the model 
of interest from SEM to any statistical model 
and seeks to quantify the mismatch between 
the specified model and the “best possible” 
model using information theoretic ap-
proaches. Inferences drawn from models are 
generally contingent on the models being 
“correct,” at least in certain ways. However, 
checking this premise often occurs ad-hoc 
based on a variety of misspecification indices. 
Levels of mismatch between model and data 

that derived from information theory might 
guide model refinement more efficiently than 
currently available approaches.

Between-Person Differences and Within-
Person Changes in Cognition 
Over a century of research on between-person 
differences in cognitive performance has 
resulted in the consensus that human cogni-
tive abilities are hierarchically organized, with 
a general factor, termed general intelligence 
or “g,” uppermost. Surprisingly, it is unknown 
whether this body of evidence, which reflects 
between-person differences, is informative 
about how cognition is structured within 
individuals. It is likely that many factors 
contributing to differences between individu-
als vary less, or differently, within individuals. 
For instance, allelic variations of the genome 
contribute to differences between but not 
within individuals. To overcome this lacuna, 
Schmiedek et al. (in press) analyzed data from 
101 young adults performing nine cognitive 
tasks on 100 days distributed over six months 
(see Box 2). The structures of individuals’ cog-
nitive abilities were found to deviate greatly 
from the modal between-person structure, 
and to vary among each other. The g factor 
was much less prominent within than be-
tween persons. Working memory contributed 
the largest share of common variance to both 
between- and within-person structures. The 
results show that between-person structures 
of cognitive abilities cannot serve as a sur-
rogate for within-person structures. To reveal 
the development and organization of human 
intelligence, individuals need to be studied 
over time.

Overview of the COGITO Study

In the COGITO study, 101 younger adults (20–31 years of age) and 103 older adults (65–80 years of age) par-
ticipated in 100 daily sessions in which they worked on cognitive tasks measuring perceptual speed, episodic 
memory, and working memory, as well as various self-report measures (see Schmiedek et al., 2010, 2020). 
All participants completed pretests and posttests with baseline measures of cognitive abilities and transfer 
tasks for the practiced abilities. Brain-related measures were taken from subsamples of the group, including 
structural magnetic resonance imaging (MRI), functional MRI, and electroencephalographic (EEG) recordings. 
A central goal of the COGITO study was the comparison of between-person and within-person structures of 
cognitive abilities. Further, the COGITO study qualifies as a cognitive training study of unusually high dosage 
and long duration because of its 100 sessions of challenging cognitive tasks.

Box 2. 
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